RESEARCH ARTICLE SUMMARY

NEUROSCIENCE

Astrocyte Ca^{2+}-evoked ATP release regulates myelinated axon excitability and conduction speed

Jonathan Lezmy*, I. Lorena Arancibia-Cárcamo, Tania Quintela-López, Diane L. Sherman, Peter J. Brophy, David Attwell

INTRODUCTION: Astrocytes support neuronal function throughout the central nervous system. In the gray matter, they regulate synapse number during development, remove synaptically released neurotransmitters to terminate their action and prevent excitotoxicity, control the extracellular potassium concentration to prevent hyperexcitability, regulate blood flow to ensure an adequate energy supply, provide lactate to neurons for energy, and respond to rises of intracellular calcium concentration ([Ca^{2+}]_{i}) by releasing adenosine triphosphate (ATP) and other gliotransmitters that act on neuronal receptors to modulate information processing. However, their role is unclear in the white matter, which transmits information rapidly between gray matter areas using axons wrapped with capacitance-reducing myelin (although they have been suggested to regulate myelination during development and during normal function).

RATIONALE: Recently, it has been suggested that learning and memory may reflect not only changes in synaptic function in the gray matter, but also changes in white matter function. In particular, neural circuit function might be regulated by changes in the conduction speed of myelinated axons that result in an altered arrival time of action potentials at a distant neuron. These speed changes might be brought about by alterations of the properties of the passively conducting myelinated internodes or of the intervening excitable nodes of Ranvier, where the action potential is generated. We applied immunohistochemistry to assess how astrocytes interact with myelinated axons, neuronal stimulation and light-evoked calcium uncaging in astrocytes to evoke Ca^{2+}-dependent release of gliotransmitters, and electrophysiology and pharmacology to characterize how astrocyte-released substances might affect the axon initial segment (AIS) and nodes of Ranvier of myelinated neurons. Measurements of conduction velocity and computer modeling allowed us to interpret the results.

RESULTS: Astrocytes closely approach the axons of myelinated neurons in layer V of the cerebral cortex that enter the corpus callosum. Uncaging Ca^{2+} within astrocytes or stimulating spine trains in neurons evoked a rise of astrocyte [Ca^{2+}], that triggered the release of ATP-containing vesicles from these cells. This evoked an inward current in the AIS and nodes of Ranvier of the pyramidal neurons. Pharmacology showed that this was mediated by the activation of G_{q}-linked adenosine A_{2a} receptors (A_{2a}Rs), implying that the released ATP was converted to adenosine by extracellular enzymes. The A_{2a}Rs raise the intracellular cyclic AMP concentration, which activates hyperpolarization-activated cyclic nucleotide–gated (HCN2) channels mediating the inward hyperpolarization-activated current (I_{h}) and thus depolarizes the cell. In the AIS, the activation of A_{2a}Rs alters excitability and hence action potential generation, whereas in the nodes of Ranvier, it decreases the conduction speed of the action potential along the axon.

CONCLUSION: As in the gray matter, astrocyte [Ca^{2+}], regulates the release of ATP into the extracellular space in the white matter. After conversion to adenosine, this regulates the excitability and conduction speed of myelinated axons. The changes in excitability at the AIS will lead to changes in the relationship between the synaptic input and action potential output of the cell. The altered conduction speed of the myelinated axon may change neural circuit function by changing the action potential arrival time at the cell’s output synapses, thus altering the integration of signals in post synaptic neurons. Variations in astrocyte-derived adenosine level can occur between wake and sleep states, and the extracellular adenosine concentration rises during energy deprivation conditions. These changes in adenosine level could thus control white matter information flow and neural circuit function.

*Corresponding author. Email: j.lezmy@ucl.ac.uk (J.L.); d.attwell@ucl.ac.uk (D.A.)
Cite this article as J. Lezmy et al., Science 374, eabh2858 (2021). DOI: 10.1126/science.abh2858

READ THE FULL ARTICLE AT https://doi.org/10.1126/science.abh2858
Astrocyte Ca\(^{2+}\)-evoked ATP release regulates myelinated axon excitability and conduction speed

Jonathan Lezmy\(^{1,2}\), I. Lorena Arancibia-Cárceles\(^1\), Tania Quintela-López\(^2\), Diane L. Sherman\(^3\), Peter J. Brophy\(^4\), David Attwell\(^1\)*

In the brain’s gray matter, astrocytes regulate synapse properties, but their role is unclear for the white matter, where myelinated axons rapidly transmit information between gray matter areas. We found that in rodents, neuronal activity raised the intracellular calcium concentration ([Ca\(^{2+}\)]\(_{\text{in}}\)) in astrocyte processes located near action potential–generating sites in the axon initial segment (AIS) and nodes of Ranvier of myelinated axons. This released adenosine triphosphate, which was converted extracellularly to adenosine and thus, through A2a receptors, activated HCN2-containing channels that regulate two aspects of myelinated axon function: excitability of the AIS and speed of action potential propagation. Variations in astrocyte-derived adenosine level between wake and sleep states or during energy deprivation could thus control white matter information flow and neural circuit function.

Astrocytes support neuronal function throughout the central nervous system. In the gray matter, they regulate synapse number during development, remove synaptically released neurotransmitters, control the extracellular K\(^+\) ([K\(^+\)]\(_{\text{eo}}\)), regulate blood flow, and provide lactate to neurons for energy (1). However, their role is unclear in the white matter, which transmits information rapidly between gray matter areas using myelinated axons. Wrapping of these axons with myelin by oligodendrocytes reduces the axon capacitance and thus confers a high conduction speed for the action potential, which, once generated at the axon initial segment (AIS) (2), is maintained as it propagates by sodium influx at the nodes of Ranvier occurring between the myelinated internodes. Because oligodendrocytes isolate almost all of the axon from the extracellular space, they are thought to be the main mediators of [K\(^+\)]\(_{\text{eo}}\), control and energy provision to axons (3, 4), making the role of astrocytes uncertain despite astrocyte processes occurring close to nodes of Ranvier (5).

Labeling for glial fibrillary acidic protein (GFAP) revealed astrocytes throughout the gray matter and white matter (Fig. 1A). On patch-clamping layer V cortical pyramidal cells or oligodendrocytes, we observed that astrocyte processes were aligned and intimately associated with the myelinated axon and its internodal sheaths (Fig. 1, B and C, and fig. S1, A to F). We used double whole-cell patch-clamping to load an astrocyte with a Ca\(^{2+}\)-sensing dye (Fluo-4) and to depolarize a pyramidal cell to stimulate action potentials. When the pyramidal cell was driven to fire briefly (30 Hz for 1 s), the astrocyte intracellular calcium concentration ([Ca\(^{2+}\)]\(_{\text{in}}\)) rose more in processes near the neuronal dendrites (within 12.7 ± 2.5 s from start of stimulus to peak fractional change in the fluorescence signal (ΔF/ΔF\(_0\)); mean ΔF/ΔF\(_0\) = 0.20 ± 0.03, n = 5 neuron-astrocyte pairs) than in processes near the axon (ΔF/ΔF\(_0\) = 0.03 ± 0.02, P = 0.023; Fig. 1E). However, if prolonged spiking was evoked (10 s), [Ca\(^{2+}\)]\(_{\text{in}}\) rose in both locations (Fig. 1, D and E, and movie S1; ΔF/ΔF\(_0\) = 0.19 ± 0.08 and 0.17 ± 0.05, respectively, P = 0.63, n = 3). Uncaging Ca\(^{2+}\) in the astrocyte also raised astrocyte [Ca\(^{2+}\)]\(_{\text{in}}\) (Fig. 1F, ΔF/ΔF\(_0\) = 1.06 ± 0.51 near dendrite, ΔF/ΔF\(_0\) = 1.05 ± 0.53 near axon, P = 0.86, n = 6), and neuronal activity evoked a further [Ca\(^{2+}\)]\(_{\text{in}}\) rise superimposed on this (ΔF/ΔF\(_0\) = 0.39 ± 0.09 near dendrite, ΔF/ΔF\(_0\) = 0.01 ± 0.06 near axon, P = 0.018).

In the gray matter, astrocytes can modulate neuronal function by releasing adenosine triphosphate (ATP) (6). We imaged putative vesicles containing ATP in astrocytes around myelinated axons of layer V pyramidal neurons using quinacrine (7). Uncaging Ca\(^{2+}\) in the astrocyte soma evoked a Ca\(^{2+}\) wave that propagated into processes along the axon (movie S2) and triggered the loss of 43% of quinacrine-labeled vesicles (Fig. 1, G to I; P = 0.0053), a loss that was not seen when the two-photon uncaging excitation was insufficient (see the materials and methods, fig. S2) to evoke a detectable rise of [Ca\(^{2+}\)]\(_{\text{in}}\), nor when assessing ATP vesicle number in areas 5 μm away (Fig. 1, J and K). The resulting ATP release into the extracellular solution was detected using luciferin-luciferase (see the materials and methods). Puffing 1 mM ATP, but not artificial cerebrospinal fluid (aCSF) from a pipette into the sensing solution evoked a large increase of luciferin luminescence (Fig. 2A), and uncaging Ca\(^{2+}\) in an astrocyte soma evoked a similar response that was not when the uncaging illumination was too weak to evoke a detectable [Ca\(^{2+}\)]\(_{\text{in}}\) rise (Fig. 2, B and C).

On release, ATP is rapidly hydrolyzed to adenosine by ecto–adenosine triphosphatases (ecto-ATPases) located on microglia and astrocytes (8). Microglia and astrocytes associate with both the AIS and nodes of Ranvier (9, 10). Adenosine receptors have previously been reported at synapses. We used immunohistochemistry to identify adenosine receptors on layer V neuron myelinated axons. Neither A1 nor A2a receptors were detected (fig. S1, G and H), but A2aR receptors (A2aRs) were found at 92% of AISs (Fig. 2D, E and H) and at 85% of nodes of Ranvier (Fig. 2, F to H). Overview images of the cortex (fig. S3D) showed A2aR-expressing AISs leading toward the corpus callosum, implying that these were excitatory neurons. A2aRs were detected in fewer nodes of the cerebellar white matter, which contains excitatory mossy and climbing fiber axons as well as inhibitory Purkinje cell axons (70%; fig. S3F), and were absent from AISs of cerebellar Purkinje cells (fig. S3E), implying a neuron type–specific expression of A2aRs in myelinated axons. A2aRs raise the cyclic AMP level, which can affect cell excitability by promoting the opening of the hyperpolarization-activated cyclic nucleotide–gated (HCN) type channels (11, 12) present in axons (13–15). We detected HCN2 channel subunits at 51% of AISs and at 64% of nodes of Ranvier (Fig. 2, I to M). HCN1 subunits were observed in pyramidal cell somata and in nodes of Ranvier (fig. S1, G to I). Adenosine receptors and HCN channels have not previously been reported at the node of Ranvier.

To examine the effect of activation of these A2aRs, we patch-clamped layer V pyramidal neurons and applied adenosine (100 μM from a puffer pipette) or another agonist for A2aRs (CGS 21680, 0.5 μM) to the AIS (Fig. 3A). Activating A2aRs in this way depolarized the cell by 6 to 7 mV (Fig. 3, A, B, and E; aCSF had no effect). The action potential response to small injected currents was increased in frequency (Fig. 3, C, F, and G), but at high injected currents was reduced, presumably as a result of increased Na\(^+\) channel inactivation (Fig. 3, D, F, and H). Hyperpolarizing the cell evoked a time-dependent inward current increase (Fig. 3I), which was mediated by Ih (HCN) channels, because it was blocked by the Ih blocker ZD7288 (fig. S4). Applying CGS 21680 increased the amplitude of Ih tail currents, reflecting an increase in magnitude of the fully activated conductance of 51% in 6 cells (P = 0.029), and shifted the 50% point of the activation curve derived from these.

1Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK. 2UK Dementia Research Institute, Francis Crick Institute, London NW1 1AT, UK. 3Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK. 4Corresponding author. Email: j.lezmy@ucl.ac.uk (J.L.); d.attwell@ucl.ac.uk (D.A.)
Fig. 1. Astrocyte processes near myelinated axons release ATP in response to [Ca2+] rises. (A) GFAP labeling of mouse coronal slice showing astrocytes in gray matter and white matter. (B) Patch-clamp-loaded Alexa Fluor 594 labels axon of layer V pyramidal cell. Expanded internodal (top) and nodal (bottom, identified by Caspr labeling, node is at arrow) regions reveal astrocytes at both locations. (C) Patch-clamped oligodendrocyte in layer V with insets below showing GFAP labeling around myelinated internodes. (D) Dendrite and axon of patch-clamped rat layer V pyramidal cell near an astrocyte loaded with the Ca2+ sensor Fluo-4. (E) [Ca2+]3- response in astrocyte processes near dendrite (black) and axon (red) to neuron depolarization with 500 pA for 1 s (top, n = 5) or 10 s (bottom, n = 3) to evoke spiking (gray). (F) [Ca2+]3- response in astrocyte processes to Ca2+ uncaging and to brief neuronal spike trains (n = 6). Top bar chart shows the Ca2+ response just before spiking; bottom bar chart shows Ca2+ response after neuron spiking evoked by 500 pA for 1 s. (G) Patch-clamped rat astrocyte loaded with Ca2+ cage NP-EGTA and Rhod-2 to measure [Ca2+]3-; the region imaged for (H) is shown. (H) Quinacrine-labeled puncta in astrocyte process are depleted on uncaging Ca2+ (Rhod 2 may not enter the smallest astrocyte processes, explaining why some puncta appear outside the astrocyte). (I to K) Quantification of ATP vesicles present per square micrometer of astrocyte process before and after uncaging [Astro. Ca2+ u.] (I); before and after excitation that did not evoke a [Ca2+]3- rise in the astrocyte (No Ca2+ u.; see fig. S2) (J); and in regions outside the astrocyte (5 μm away) before and after uncaging (K). Numbers of processes shown on bars. Processes came from 12 cells. Data shown in (A) to (C) are from mice; those in (D) to (K) are from rats.

To assess the function of A2aRs at the nodes of Ranvier, we patch-clamped layer V pyramidal cells. Dye filling revealed an enlarged bleb at the end of the axon where it was cut during the brain-slicing process. This allowed patch-clamping of the bleb (see the materials and methods), which was ~3 (mean 3.2 ± 0.4 in 5 cells) nodes away from the soma (Fig. 4A). In Thy1-Caspr-GFP mice, the nodes of layer V pyramidal neurons could be seen during the experiment, from paranodal GFP fluorescence and because axon branches often occur at nodes, and postreccording immunohistochemistry revealed A2aRs at the AIS and nodes (Fig. 4A). Puffing CGS 21680 onto a node (Fig. 4A) did not significantly depolarize the pyramidal cell soma (0.99 ± 0.46 mV in 5 cells, P = 0.1), implying that the puffed drug did not reach the soma or AIS. Injecting current (500 pA for 5 msec, repeated at 2 Hz) into the soma evoked an action potential. This evoked a delayed action potential in the axonal bleb, which became more delayed when CGS 21680 was puffed at an intervening node (Fig. 4B; >100 responses were averaged). Plots of rate of change of signal (d(signal)/d time) versus signal (Fig. 4C) were used to estimate when the action potentials in each location showed an accelerating on-set phase (soma depolarization >1 mV/msec and a bleb inward current increase more negative than ~0.5 pA/msec, shown as dashed lines in Fig. 4B). The latency of the response at the bleb increased from 108 ± 31 msec in control conditions to 320 ± 89 msec when CGS 21680 was puffed (P = 0.03, paired t test, n = 5 cells; Fig. 4D) and the spike width recorded at the bleb increased by 0.28 msec from 0.30 ± 0.10 msec to 0.58 ± 0.14 msec (P = 0.015, paired t test, n = 5).

To convert this latency increase to a change of conduction speed, we need to assume where in the AIS the action potential is initiated and how fast it propagates backward to the soma compared with forward to the bleb (see the materials and methods). If the spike starts at the middle of the AIS and the forward speed is twice the backward speed (16), then CGS 21680 reduced the forward speed from 1.21 ± 0.23 to 0.43 ± 0.08 m/sec (64% reduction; filled circles in Fig. 4E). Alternatively, if the spike starts at the end of the AIS and the forward speed is three times faster than the backward speed (16), then the speed is reduced from 0.68 ± 0.16 to 0.31 ± 0.13 m/sec (54% reduction; open circles in Fig. 4E). Thus, for a range of assumptions, activation of nodal A2aRs produces
Fig. 2. ATP release from astrocytes may target adenosine receptors on myelinated axons of layer V pyramidal neurons. (A) Detection of ATP puffed into extracellular solution using luciferin-luciferase. (B) Two-photon excitation uncaging Ca^{2+} in astrocytes evoked a luciferin-luciferase signal, unless the excitation failed to raise astrocyte [Ca^{2+}]_{i}. (No Ca^{2+} u.; see fig. S2). (C) Quantification of experiments in (B) in seven cells. (D to H) A2aRs are present in the AIS (D), where they overlap with Nav expression [mean of 14 Na, and 25 A2aR profiles (E)] and at the node of Ranvier (F), where they overlap with Na, and are flanked by Caspr labeling [mean of 48 Caspr, 48 A2aR and 24 Na, profiles (G)]. (H) Percentage of 25 AISs and 134 nodes that express A2aR. (I to M) HCN2 channel subunits are present in the AIS (I), where they overlap with Na, expression [mean of 19 Na, and 16 HCN2 profiles (J)], and at the node of Ranvier (K), where they overlap with Na, and are flanked by Caspr labeling [mean of 53 Caspr and HCN2 profiles (L)]. (M) Percentage of 49 AISs and 98 nodes that express HCN2. Data shown in (A) to (E), (I), and (J) are from rats; those in (F), (G), (K), and (L) are from mice; and those in (H) and (M) combine rat AIS and mouse node data.

A very significant reduction of conduction velocity (P = 0.0017 comparing the ratio of the conduction velocities).

To explore how A2aRs and I_{h} affect excitability and conduction velocity, we used a MATLAB model of myelinated axons in the corpus callosum (17), which was adapted to mimic either (i) a soma attached to a truncated axon with three internodes and a terminal bleb (Fig. 5A) or (ii) an infinitely long axon (see the materials and methods). The AIS and nodes of Ranvier contained voltage-gated Na^{+} and K^{+} channels to generate action potentials, whereas the soma and bleb lacked these channels. We modeled the I_{h} current in the absence of A2aR activation as being present in the soma and proximal AIS only and unaffected by the puff application of A2aR-activating drugs at the distal AIS (and the [cAMP] rise that they produce), consistent with the presence in the somatodendritic compartment (fig. S1G) of I_{h} channels composed of HCN1 subunits (18), which are relatively insensitive to cAMP (19). The increase in I_{h} evoked by A2aR activation in the AIS was modeled as the addition of an extra current mediated by cAMP-activated HCN2 channels located in the distal AIS. The maximum conductance of this extra current was set to increase the total maximum I_{h} conductance (measured at the soma) by 51% as observed (Fig. 3I), and the midpoint of the activation curve was set at ~80 mV to reproduce the positive shift for the total I_{h} apparent activation curve in Fig. 3J. Adenosine-activated I_{h} was also added to the nodes of Ranvier at a density 1.41-fold higher than in the distal AIS, as measured immunohistochemically (see the materials and methods).

Adding the adenosine-activated conductance to the distal AIS in the model depolarized the soma by 5.9 mV, as seen experimentally (Figs. 3E and 5B). It also increased the firing evoked by a small injected current (Fig. 5, C and D) while decreasing that evoked by a large current (Fig. 5, C and D), also as seen experimentally (Fig. 3, C to H). However, the simulated depression of action potential amplitude at large currents was larger than that observed experimentally. These changes were largely a result of the I_{h} added to the AIS, because adding it solely to the nodes had only a minor effect on the resting potential at the soma (Fig. 5B). Adding I_{h} to the nodes of Ranvier decreased the conduction speed (Fig. 5E), as observed when puffing CGS 21680 onto the nodes (Fig. 4E). The predicted reduction was smaller than that observed experimentally, presumably because of the mild depolarization generated at the nodes (+3.8 mV). Using the infinite cable model, adding the adenosine-activated I_{h} depolarized the nodes by +11.4 mV, reduced the predicted conduction speed by 48% from 2.23 to 1.17 m/s (Fig. 5F), and increased the axonal spike width by 0.22 ms (mainly by increasing...
Na" channel inactivation at the resting potential because this was mimicked by decreasing the peak Na" conductance ~twofold, similar to the 0.28 msec reported experimentally above.

Because astrocyte [Ca^{2+}]_{i} rises evoked the release of ATP (Fig. 1 G to K, and Fig. 2 A to C), which is expected to be converted to adenosine extracellularly and to act on A_{2a}Rs at the AIS and nodes of Ranvier, we tested whether uncaging Ca^{2+} in astrocytes modulated the excitability and conduction speed of cortical layer V pyramidal cell myelinated axons. Ca^{2+} was uncaged in an astrocyte with processes running near the AIS of a pyramidal cell (Fig. 6A and movie S3). Within 70 s of uncaging Ca^{2+} in astrocytes, which were shown by post hoc immunostaining to have processes close to nodes of Ranvier (Fig. 6, G and H), evoked a decrease of axonal conduction speed (Fig. 6I) in experiments monitoring the action potential propagation from the soma to a bleb ~4 (mean 3.8 ± 0.5 in 5 cells) nodes along the axon. These data are similar to those obtained by puffing an A_{2a}R agonist onto the nodes (Fig. 4) and, as for those experiments, the decrease of conduction speed calculated was dependent on the exact site of action potential initiation within the AIS and its forward and backward propagation speeds (Fig. 6I). Introducing ZD7288 (20 μM) into the targeted axons to block I_{h} (HCN) channels prevented the speed reduction evoked by astrocyte Ca^{2+} activity (fig. S6A). In unmyelinated axons and some other neuronal types, axonal HCN channels can speed, rather than slow, the action potential (13, 14) (see fig. S6 legend). Inducing robust neuronal activity (30 Hz for 1 min) to raise astrocyte [Ca^{2+}]_{i} (Fig. 1E) also induced a decrease of axonal conduction speed (P = 0.014), which was abolished by superfusing the A_{2a}R blocker ZM 241385 (100 nM) (fig. S6B).

These data reveal a new modulation of neuronal circuit function by glial cells. Astrocyte modulation of neuronal synaptic function in the gray matter has been accepted as a major determinant of neuronal function (6, 20, 21), but the role of white matter astrocytes is less clear. Our data, summarized in fig. S7, demonstrate that astrocytes modulate the excitability of the AIS of excitatory neurons and regulate the conduction speed of myelinated axons. This regulation is a result of astrocytes raising the concentration of adenosine near the AIS or nodes of Ranvier (of a single axon or possibly several axons at once), which can increase or decrease AIS excitability and decreases axon conduction speed. Adenosine release can occur when axonal action potential firing raises [Ca^{2+}]_{i} in adjacent astrocytes (22); this triggers the release of ATP from vesicles (Figs. 1 and 2), which is subsequently converted to adenosine by ecto-ATPases expressed by microglia, astrocytes, and oligodendrocyte lineage cells (8). Neuronal activity in cortical layer V exhibiting a higher firing rate to low injected currents (P = 0.0175 when comparing firing rates normalized to the maximum rate evoked at high injected current) and a lower firing rate to high injected currents (P = 0.0136). These changes, which are similar to those seen when activating AIS A_{2a}Rs (Fig. 3, B to H), were not mediated by glutamate release from astrocytes (fig. S5), were blocked by superfusion of the A_{2a}R blocker ZM 241385 (100 nM) or by intracellular dialysis of the neuron with the I_{h} blocker ZD7288 (20 μM), and were not seen if the uncaging illumination failed to evoke a [Ca^{2+}]_{i} rise (Fig. 6, B to F).

Uncaging Ca^{2+} in astrocytes, which were shown by post hoc immunostaining to have processes close to nodes of Ranvier (Fig. 6, G and H), evoked a decrease of axonal conduction speed (Fig. 6I) in experiments monitoring the action potential propagation from the soma to a bleb ~4 (mean 3.8 ± 0.5 in 5 cells) nodes along the axon. These data are similar to those obtained by puffing an A_{2a}R agonist onto the nodes (Fig. 4) and, as for those experiments, the decrease of conduction speed calculated was dependent on the exact site of action potential initiation within the AIS and its forward and backward propagation speeds (Fig. 6I). Introducing ZD7288 (20 μM) into the targeted axons to block I_{h} (HCN) channels prevented the speed reduction evoked by astrocyte Ca^{2+} activity (fig. S6A). In unmyelinated axons and some other neuronal types, axonal HCN channels can speed, rather than slow, the action potential (13, 14) (see fig. S6 legend). Inducing robust neuronal activity (30 Hz for 1 min) to raise astrocyte [Ca^{2+}]_{i} (Fig. 1E) also induced a decrease of axonal conduction speed (P = 0.014), which was abolished by superfusing the A_{2a}R blocker ZM 241385 (100 nM) (fig. S6B).

These data reveal a new modulation of neuronal circuit function by glial cells. Astrocyte modulation of neuronal synaptic function in the gray matter has been accepted as a major determinant of neuronal function (6, 20, 21), but the role of white matter astrocytes is less clear. Our data, summarized in fig. S7, demonstrate that astrocytes modulate the excitability of the AIS of excitatory neurons and regulate the conduction speed of myelinated axons. This regulation is a result of astrocytes raising the concentration of adenosine near the AIS or nodes of Ranvier (of a single axon or possibly several axons at once), which can increase or decrease AIS excitability and decreases axon conduction speed. Adenosine release can occur when axonal action potential firing raises [Ca^{2+}]_{i} in adjacent astrocytes (22); this triggers the release of ATP from vesicles (Figs. 1 and 2), which is subsequently converted to adenosine by ecto-ATPases expressed by microglia, astrocytes, and oligodendrocyte lineage cells (8). Neuronal activity in cortical layer V uncertainty.
gray matter readily raised $[\text{Ca}^{2+}]_i$, in astrocyte processes near neuronal dendrites, presumably as a result of classical neurotransmitters or other signaling molecules acting on astrocytes, but more intense neuronal activity (or conceivably a large number of neurons firing at a low rate) was needed to raise it in the processes near axons (Fig. 1, E and F). Thus, the overall level of neuronal activity may modulate the conduction speed of white matter axons.

Changes in the ATP level in astrocytes or neurotransmitters may also alter the extracellular adenosine concentration, which may alter the excitability of local circuits by acting on presynaptic A1 receptors to suppress glutamate release at excitatory synapses, or by responding to astrocytic ATP release by oligodendrocytes, microglia, and astrocytes. This may alter the excitability of neuronal circuits (36, 37).

Our data demonstrate that the node of Ranvier can change its electrical function rapidly by substances released from surrounding cells. We have shown this for astrocyte-released ATP/adenosine, but oligodendrocyte precursor cells and microglia could theoretically exert similar effects either by releasing ATP or adenosine directly onto spike generation sites or by responding to astrocytic ATP release by releasing other glutamatergic or GABAergic molecules onto the axons. Neural circuits depend crucially on action potential arrival time for their function (30), and cognition depends on oscillations of neural firing probability that in turn depend on propagation time in myelinated neurons (31–33). Thus, the decrease of the conduction speed of myelinated axons that is evoked by adenosine may change information processing and cognition, when the adenosine level rises either during a prolonged awake period or in response to complex motor behavior and pathological conditions. Indeed, behavioral effects linked to exploratory activity, aggression and anxiety (34, 35), and pathological effects in epilepsy, Parkinson’s disease, Alzheimer’s disease, depression, and autism have all been linked to impairments of adenosine signaling (36, 37). Our results make the testable prediction that, when adenosine levels rise during prolonged wakefulness or in complex motor behavior and pathological conditions, the conduction speed of myelinated axons should decrease, resulting in delays to the action potential arrival time at downstream synapses and possible impairments of coincidence detection or oscillatory firing generation.

Materials and Methods

Animals

Sprague-Dawley rats or transgenic mice at postnatal days 28 to 32, housed on a 12-hour light/12-hour dark cycle were used in all experiments. At this age, myelination is advanced, but cells are still suitable for stable patch-clamp recordings. Animals were killed to make brain slices 4 hours after the room light was turned on. Each experiment was performed on brain slices from at least three animals and at least one of each sex. Expression of $A_2\alpha$Rs and HCN channels in sites of spike generation appeared the same in mouse and rat and in males and females. Animal procedures were carried out in accordance with the guidelines of the UK Animals (Scientific Procedures) Act 1986 and subsequent amendments (under Project License 70/8976). Thy1-Caspr-GFP mice were generated as previously described (38).

Acute brain slice preparation

Coronal cortical slices (300 μm thick) were prepared on a vibratome in ice-cold solution containing (in mM): 93 N-methyl-o-glucamine...
Fig. 5. Computational modeling predicts the adenosine-evoked decrease of axonal conduction speed.

(A) Schematic diagram of the model of the experiment in Fig. 4. (B) Adding different densities of adenosine-sensitive maximal I_h conductance (g_{h}) to the distal AIS evokes a larger soma depolarization than adding it to the nodes of Ranvier. Vertical dashed line shows measured maximal conductance (0.11 mS/mm²). (C) Voltage response at soma to injecting 20 pA (top row) or 180 pA (bottom row) with three different levels of g_{h}, added (as indicated) to the distal AIS. As observed experimentally (Fig. 3, C to H), at low injected current, the action potential frequency is increased; at high injected current, it is decreased (because of the simulated decrease of I_h current). (D) Voltage response at distal AIS (mS/mm²) with three different levels of g_{h}, added to the distal AIS (as indicated). Voltage response at soma to injecting 20 pA (top row) or 180 pA (bottom row) with three different levels of g_{h}, added (as indicated) to the distal AIS. As observed experimentally (Fig. 3, C to H), at low injected current, the action potential frequency is increased; at high injected current, it is decreased (because of the simulated decrease of I_h current). We defined an action potential as occurring if the voltage crossed 50 mV. (E) Action potential speed from the first to the last node in (A) and average resting potential of the three nodes as a function of g_{h}, added to each node (vertical dashed line shows the estimated physiological value of 0.1565 mS/mm²; see the materials and methods). (F) Predictions of infinite axon model for conduction speed and node resting potential as a function of g_{h}.

Patch-clamping of neuronal somata

Experiments were performed with an Olympus BX51WI microscope under an Olympus LUMPlanFl 40× lens. Layer V pyramidal cells were identified by their location and morphology. Microelectrodes with resistances of 5 to 15 MΩ were pulled from borosilicate glass capillaries (Harvard Apparatus) and filled with an intracellular solution containing (in mM): 145 K-glucount, 2 MgCl₂, 0.5 H₂-EGTA, 2 MgATP, 0.2 Na₂GTP, and 10 HEPES, pH adjusted to 7.2 with KOH. Soma were patch-clamped in whole-cell configuration, and the signals were amplified using a Multiclamp 700B (Molecular Devices), filtered at 4 kHz, and digitized at 50 kHz. The series resistance was <20 MΩ, was compensated by >70%, and did not vary by >10% during experiments. The mean input resistance in whole-cell mode, after compensation for series resistance, was 130.6 ± 25.9 MΩ in control conditions and 84.8 ± 23.8 MΩ during CGS 21680 application to the AIS (n = 6, P = 0.049). Recordings were acquired with Clampex and analyzed with Clampfit software (Molecular Devices). In current-clamp mode, bridge balance and pipette capacitance were corrected. To generate graphs of firing rate versus injected current, current steps in increments of 100 pA were injected for 1 s. All membrane potentials were corrected for a pipette liquid junction potential of −16 mV. To analyze currents activated by hyperpolarization, tail currents were analyzed at −136 mV obtained after 1 s pretest pulses in 10-mV increments from −56 to −146 mV. The tail currents analyzed were primarily generated by HCN channels (I_h, current) because they were significantly diminished by adding 50 µM ZD7288 (Tocris Bioscience) (fig. S4). Tail currents were fitted with single exponential curves that were extrapolated back to the end of the pretest pulses. The resulting tail amplitude values were fit to a function:

$$I = I_{max} + (I_{min} - I_{max})/\left(1 + \exp\left[k(V - V_{1/2})\right]\right)$$

where the reversal potential of I_h was taken as −23 mV (B3). In some experiments, 50 µM cAMP (Sigma-Aldrich) or 20 µM ZD7288 (Tocris Bioscience) was added to the intracellular solution. ZD7288 was previously shown to block I_h when applied intracellularly (B5).

Patch-clamp recording from axonal blebs

Experiments were performed using a Zeiss LSM780 two-photon confocal microscope with a W Plan-Apochromat 20× objective. Blebs are patchable structures formed at the cut end of axons at the surface of slices (39). Alexa Fluor 594 (ThermoFisher Scientific) was allowed time to diffuse from the soma to the bleb. Action potentials were recorded as a current in voltage-clamp mode. To avoid phototoxicity, exposures to excitation lights were briefly used only to trace the axon and monitor the puffing area (see below). High-resolution images of whole axons were acquired after completion of the electrophysiological experiments. Exposure to the excitation lasers did not significantly affect
the waveform of action potentials. In Fig. 6, D and E, where the effects of adenosine receptors or HCN channels were blocked, there was no change in action potential width measured at the soma. For the first spike evoked by a 500-pA step, the full width at half-maximum with ZM 241385 was 1.15 ± 0.13 ms before and 1.18 ± 0.14 ms after Ca\(^{2+}\) uncaging \(n = 4\); not significantly different, \(P = 0.12\); with ZD7288, it was 1.25 ± 0.17 ms before and 1.21 ± 0.13 ms after Ca\(^{2+}\) uncaging \(n = 4\); not significantly different, \(P = 0.44\). Similarly, there was no difference in the action potential width measured at the bleb with ZD7288 inside the neurons (fig. S6A); the full width at half-maximum (the maximum being the amplitude of the inward current peak) was 0.53 ± 0.17 ms before and 0.53 ± 0.10 ms after Ca\(^{2+}\) uncaging \(n = 5\); not significantly different, \(P = 0.99\). Microelectrodes with resistances of 8 to 9 MΩ were filled with aCSF and 100 μM Alexa Fluor 488 (ThermoFisher Scientific). Blebs were patch-clamped in cell-attached configuration, and the signals were filtered at 2 kHz and digitized at 50 kHz. Action potentials at the soma were evoked and recorded, and action currents at the axon bleb were recorded simultaneously. To accurately determine the delay between the somatic and axonal signals, at least 100 somatic spikes were evoked. First derivatives of the somatic and axonal signals were generated and then time-shifted to align the peaks of the somatic spikes. The signals were then averaged, and the soma-axon delay was measured as the difference between the onset of the axonal spike (time point recorded before a current drop of >0.5 pA/ms) and the somatic spike (time point recorded before an increase of >1 mV/ms).

Local application of drugs to axons

CGS 21680 (500 nM; Cayman Chemical) or 100 μM adenosine (Sigma-Aldrich) were puffed applied onto the AIS or nodes of Ranvier. The drugs were added to aCSF with 100 μM Alexa Fluor 594 to monitor the spread of the drugs. Two or three MΩ pipettes were filled with this solution and placed 10 μm away from the targeted axon. Positive pressure was either applied with a microinjector (PMI-100, Dagan) for 20 ms at 10 psi or controlled manually with a syringe. In both cases, positive pressure was calibrated and live monitored to eject drug over a radius of ≤20 μm (from the tip of the pipette set at saturating intensity to the edge of detectable fluorescence). The flow of the perfusion was set to wash out the puffed drug in the direction away from the targeted neuron. The AIS was detected by adding 100 μM Alexa Fluor 594 into the intracellular solution, and its diffusion into the axon was live monitored. The pipette puffing onto the AIS was placed near the distal AIS 25 to 30 μm away from the soma. The pipette puffing onto the nodes was placed near an axonal branch (detected from the Alexa Fluor 594 fill) or green fluorescent protein (GFP) signal detected along the axon (cyan). (E) Local application of drugs to axons, with Alexa Fluor 594 (red) and a syringe. (F) Local application of drugs to axons, with Alexa Fluor 594 (red) and a syringe. (G) Local application of drugs to axons, with Alexa Fluor 594 (red) and a syringe. (H) Local application of drugs to axons, with Alexa Fluor 594 (red) and a syringe. (I) Local application of drugs to axons, with Alexa Fluor 594 (red) and a syringe. (J) Local application of drugs to axons, with Alexa Fluor 594 (red) and a syringe. (K) Local application of drugs to axons, with Alexa Fluor 594 (red) and a syringe. (L) Local application of drugs to axons, with Alexa Fluor 594 (red) and a syringe.

Patch-clamping, calcium uncaging, and imaging of astrocytes

Astrocytes were detected by their morphology and with the selective marker sulforhodamine 101 (SR 101). Before the experiments, the slices were incubated with 1 μM SR101 (Tocris Bioscience) added to the slicing solution for 20 min at 37°C. The presence of astrocytes was confirmed by post hoc fixing slices and immunolabeling for GFAP. Microelectrodes with resistances of 7 to 8 MΩ were filled with a K-methylsulfate intracellular solution containing (in mM): 100 KMeSO\(_4\), 50 KCl, 2 MgCl\(_2\), 4 MgATP,
0.3 Na$_2$GTP, and 10 HEPES. Fluo-4 (100 µM; ThermoFisher Scientific) was added to image calcium changes, and 5 mM NP-EGTA (ThermoFisher Scientific) was added to allow uncaging of calcium in single astrocytes. Images were acquired at 2 Hz with a confocal argon laser, and NP-EGTA photolysis was obtained by applying two-photon excitation at 720 nm to the soma (10 iterations, 2.55 µs pixel dwell time). Laser intensity was set at 10 mW and, if needed, was increased gradually until a calcium concentration rise was evoked (fig. S2). Intensities just below those needed to evoke a detectable [Ca$^{2+}$]$_i$ rise were used as control experiments to check that two-photon illumination alone was not responsible for the release of ATP and adenosine generation observed. In the experiments examining calcium activity at astrocyte processes, images were acquired at the plane of the axon or of a dendrite contacting astrocyte processes. Regions of interest (ROIs) were selected and [Ca$^{2+}$]$_i$ changes were measured as $\Delta F/F$ after background subtraction. At the start of the experiments, the baseline astrocyte Ca$^{2+}$ activity was recorded for 10 s, and, over this brief period, no spontaneous Ca$^{2+}$ transients were observed.

Immunohistochemistry

Brains from Thy1-Caspr-GFP mice were perfusion-fixed in 4% paraformaldehyde (PFA) in 0.01 M phosphate-buffered saline (PBS), and fixed tissue was then cut into 70-µm-thick slices. Alternatively, 300-µm-thick acute slices from mouse and rat brains were immersion-fixed in a solution containing 4% PFA, 4% sucrose, and 0.1 M PBS. The slices were permeabilized with 0.2% Triton X-100 (Sigma-Aldrich) in a blocking solution (10% goat serum in 0.01 M PBS) for 1 hour. The slices were then incubated overnight at 4°C with the following primary antibodies, as required: rabbit anti-A2bR (Abcam, ab3461, 1:100), mouse anti-A2aR (Millipore, 05-717, which has been validated as giving no labeling in A2bR KO tissue [40], 1:200), rabbit anti-A1R (Abcam, ab82477, 1:100), rabbit anti-A2bR (Cohesion, CPA3755, 1:100), mouse anti-Ankyrin G (Neumob, N106/36, 1:500), mouse anti-panNav (Sigma-Aldrich, K8/35, 1:100), mouse anti-Caspr (Neumob, K65/35, 1:100), chicken anti-GFIP (Millipore, AB6901, 1:1000), rabbit anti-GFAP (Millipore, AB5804, 1:500), rabbit anti-HCN1 (Alomone, APC10, 1:100), and rabbit anti-HCN2 (Alomone, APC30, 1:100). The slices were then incubated for 2 hours at room temperature with the following secondary antibodies, as required (ThermoFisher Scientific, 1:500): anti-chicken or anti-mouse Alexa Fluor 488, anti-rabbit or anti-mouse Alexa Fluor 546, and anti-rabbit Alexa Fluor 647. The slices were incubated with 4′,6-diamidino-2-phenylindole nuclear stain (1:50,000 in PBS from a 5 mg/ml stock concentration) for 10 min and mounted in Dako fluorescent mounting medium. Slices were washed with 0.01 M PBS three times with 10 min between each step. Negative control experiments were also performed to check for any labeling caused by unspecific binding of the secondary antibodies. For this, we followed the same protocol but omitted the incubation with the primary antibodies. Slices were imaged using a Zeiss LSM780 confocal microscope with a Zeiss Plan-Apochromat 63× oil immersion lens, and images were acquired with ZEN Microscope Software (Zeiss). Z-stacks of 1-µm intervals were imaged, and their maximum intensity was projected using ImageJ (FUI). A line was drawn along the axons to plot intensity profiles. To plot node of Ranvier profiles, the width of the line was adjusted to fit the width of the Caspr-labeled paranodes. To analyze GFAP staining running parallel to axons, the width of the line was adjusted to 5 µm and centered on the axon.

Quantification of putative ATP-containing vesicles

Before the experiments, the slices were incubated with 20 µM quinacrine dihydrochloride (Sigma-Aldrich) added to the slicing solution for 25 min at 37°C. Quinacrine is a green selective marker for ATP-containing vesicles [7] or lysosomes (47). Calcium was uncaged and imaged from single astrocytes as described above using the red Ca$^{2+}$ indicator Rhod-2 (50 µM, ThermoFisher Scientific) instead of Fluo-4. Images of astrocyte processes with ATP vesicles were acquired before and after Ca$^{2+}$ uncaging with two-photon excitation at 720 nm at the soma. Adjacent areas were also imaged. ROIs located a similar distance away of the soma (n = 2227), similar to previous reports (42).

Detection of extracellular ATP

Changes in extracellular ATP level were detected with a luciferin/luciferase–based chemiluminescence assay emitting green light. Perfusion of brain slices was halted and 50-µl aliquots containing 12 mg/ml luciferin (Sigma-Aldrich) and 5 mg/ml luciferase (Sigma-Aldrich) were added to a 1-ml bath chamber filled with aCSF at room temperature (because luciferase is not stable at higher temperatures). Calcium was uncaged and imaged from single astrocytes as described above using the red Ca$^{2+}$ indicator Rhod-2 (50 µM) instead of Fluo-4. A field of view containing an astrocyte and its processes was selected and ATP-derived bioluminescence was collected in darkness using highly sensitive GaAsP detectors with a Zeiss LSM780 two-photon/confocal microscope.

Estimating axonal conduction velocity

We estimated axonal conduction velocities on the basis of parameters acquired experimentally from dual soma and axon bleb patch-clamp recordings, live confocal imaging, and post hoc immunostaining of layer V pyramidal neurons. In accordance with previous studies, two assumptions were made: (i) spikes initiate at the distal half of the AIS (the AIS being defined as being from the edge of the soma to the start of the first Caspr-labeled paranode) because in the distal AIS Na$^+$ channels are found in high density, have a low voltage threshold, and are isolated from the capacitive load of the soma (43, 44) and (ii) forward conduction speed is two to three times faster than backward conduction speed because of the lower Na$^+$ channel density in the proximal AIS and the capacitive load of the soma (16, 44). The axonal conduction speed can be then calculated as follows:

$$v = \frac{v_{\text{bleb}} - 2v_{\text{soma}}}{T}$$

or

$$v = \frac{v_{\text{bleb}} - 3v_{\text{soma}}}{T}$$

where v is the speed from the spike initiation site to the axon bleb, T is the delay time from the somatic signal to the bleb signal (obtained from dual patch-clamp recordings), and v_{bleb} and v_{soma} are the distances from the spike initiation site to the recording sites on the axon bleb or on the soma, respectively (obtained from confocal imaging by assuming a position for spike initiation).

Computer simulations of infinite corpus callosal axon

As in our previous studies (17, 45, 46), action potential conduction along myelinated axons was simulated using MATLAB. Electrophysiological parameters were based on the finite impedance double-cable model (model C of Richardson et al. (47), except that the membrane capacitance was taken as the physiologically measured value of 0.9 µF/cm2 (48). The differential equations of the model were derived and solved as in the myelinated axon model of Halter and Clark (49), in which the axon is divided into compartments representing the node, paranode, and internode. The MATLAB code, including all parameters and equations, is available (see the Acknowledgments). Conduction speed simulations of long callosal-like axons were performed as described previously (17), where the parameters used were based on experimental data. The speed was measured between nodes 20 and 30 in a uniform axon containing 51 nodes and 50 internodes of constant lengths (nodes: 1.5 µm, internodes: 81.7 µm) and diameters (nodes: 0.64 µm, internodes: 0.73 µm). The periaxonal space thickness, which has an
important effect on conduction speed (17, 50),
was set at 15 nm except in the paranodes (the 1.9-μm end parts of the internodes), where the width was reduced to 0.0123 nm (17). Assuming a myelin wrap periodicity of 15.6 nm, five myelin wraps were needed to set the g-ratio close to 0.8. Each node expressed fast voltage-gated Na⁺ (Naᵥ) channels, persistent Naᵥ channels, and slow voltage-gated potassium (Kᵥ) channels at fully activated conduction densities of 10, 0.01, and 0.4 mS/mm², respectively, as well as adenosine-gated Iᵥh channels at a density of either 0 (for no A₂aR activation) or 0.1565 (to mimic A₂aR activation) mS/mm². This density was experimentally derived as follows: the maximum Iᵥh conductance (derived from tail current analysis as in Fig. 3, I and J) evoked in the ~10-μm length of the distal AIS was divided by the area of the distal AIS to obtain a fully-activated conduction density of 0.111 mS/mm². Immunohistochemical labeling of A₂aRs then showed their density at nodes of Ranvier to be a factor of 1.41 higher than in the distal AIS (calculated by integrating the background-subtracted fluorescent signal across a small length w of the axon and dividing by π⋅w⋅d, where d is the diameter of the axon), implying a density at the nodes of 0.1565 mS/mm². The node resting potential in the absence of adenosine was set to ~82 mV by adjusting the magnitude of a leak conductance (to 0.113 mS/mm²) with a reversal potential of ~84 mV (the reversal potential of the other K⁺ currents in the model). The leak current represents K⁺ leak channels such as TRAAK present in the nodes of Ranvier (51, 52).

Computer simulations of patch-clamped neuron with soma, AIS, and three internodes

This model was then modified so that the dimensions of a specimen patch-clamped and imaged neuron acquired for the present study (Fig. 4) were implemented (Fig. 5A). The model included “nodes” representing the soma, the proximal AIS, the distal AIS, three nodes of Ranvier, and a terminating bleb. To represent the area and thus the capacitance of the real soma, the diameter and length of the cylindrical “node” representing the soma were both set to 18 μm. The proximal and distal AIS had lengths of 21.9 and 10 μm, respectively, and diameters (measured experimentally as the average over each of these two zones) of 1.046 and 0.525 μm respectively. The soma and proximal AIS, the proximal and distal AIS, were separated by extremely small (10 -3 μm long) “internodes” (which are essential for the alternating node-internode model to function in MATLAB; not shown in Fig. 5A) with diameters of 1.046 and 0.79 μm, respectively. Distal to the AIS are three internodes of lengths 24.91, 52.44, and 39.20 μm and diameters of 0.51, 0.56, and 0.53 μm respectively, each followed by nodes of Ranvier of lengths 1.126, 0.915, and 0.414 μm, and diameters of 0.445, 0.452, and 0.401 μm, respectively. The third node of Ranvier was followed by an extremely small (10 -7 μm long) “internode” of diameter 0.4 μm and then a terminal bleb of length 1.64 μm and diameter 3 μm. Each node of Ranvier expressed the same conductance as in the infinite cable model. The proximal and distal AIS compartments expressed fast Naᵥ, persistent Naᵥ, and slow Kᵥ channels at the same densities as in the infinite cable model, and in addition a low threshold Kᵥ channel with a maximum conductance of 0.4 mS/mm², which was needed to allow the generation of repetitive action potential trains in response to current injected at the soma. Adenosine-insensitive Iᵥh conductance (with a half-maximum activation voltage of ~103.5 mV, as found on average in experiments as in Fig. 3J) was expressed in the soma and proximal AIS (as seen immunohistochemically for HCN1 channels) at a density of 0.0033 mS/mm² (set so as to reproduce the mean Iᵥh maximal conductance seen in the absence of adenosine in Fig. 3, I and J), whereas adenosine-sensitive Iᵥh was present in the distal AIS at a density of 0.111 mS/mm² and in the nodes of Ranvier at a density 1.41-fold higher (see above). The density used for the distal AIS was set to increase the maximum Iᵥh conductance measured at the soma by 51% as observed during activation of A₂aRs in the distal AIS (Fig. 3, I and J), and the midpoint of its activation curve was at ~80 mV to reproduce the positive shift for the total Iᵥh apparent activation curve in Fig. 3J. The terminal bleb expressed no voltage-gated conductances. To match the model to the experimental data, we wanted to reproduce the 5.8-mV depolarization recorded at the soma when puffed adenosine activated Iᵥh in the distal AIS (Fig. 3E). We found that if we set the resting potential to ~82 mV in the soma and AIS using a leak conductance with a reversal potential of ~84 mV (as in the nodes), then this introduced too much resting conduction, reducing the depolarization evoked at the soma when A₂aRs were activated in the distal AIS to only ~1.55 mV. Accordingly, in the soma, AIS, and terminal bleb, we used a nominal leak reversal potential of ~4000 mV, converting the leak into an essentially voltage-independent (~zero conduction) current, similar conceptually to the constant outward current generated by the Na⁺/K⁺ pump. The adenosine-sensitive Iᵥh (when activated in the distal AIS) then generated a depolarization of 5.9 mV at the soma. To investigate the effect of the adenosine-evoked Iᵥh current, the action potential speed was measured between the first and the last nodes of Ranvier when current was injected briefly (1 nA for 100 μsec) at the soma. The model reproduced reasonably well the assumptions that we made to assess the conduction speed in our experiments: In the simulations, spikes evoked by current injection at the soma were initiated in the distal AIS “node”, the forward conduction speed was faster than the backward speed (from distal AIS to bleb: 1.33 m/s; from distal AIS to soma: 0.23 m/s), and the conduction speed from the distal AIS to the bleb (1.33 m/s) was in the range estimated from the experiments in Figs. 4E and 6I (1.31 to 2.23 m/s).

Code availability

The computer code used for the simulations described above has been deposited in Zenodo (53).

Statistics

Statistical analyses and graphs were performed with GraphPad Prism 6. Data are presented as mean ± SEM. Data normality was assessed with D’Agostino & Pearson omnibus or Kolmogorov-Smirnov tests. Comparisons of normally distributed two groups were made using two-tailed Student t tests. When treatments involved more than two independent groups, statistical comparisons were performed with one-way ANOVA and post hoc Tukey’s multiple comparisons. Data that were not normally distributed were analyzed with Mann-Whitney U test or Wilcoxon matched-pairs signed rank test. Assessment of whether the slope of linear regressions differed significantly from zero was obtained using the t statistic for the slope. P values within any figure panel were adjusted for multiple comparisons.

Gender and species effects

Mice were used in experiments when it was essential to have the nodes labeled with Caspr-GFP. Rats were also used because they are more generally available at all ages in our university. We observed no differences between the two species, for example, in

(i) the presence of A₂aRs and HCN channels at nodes of Ranvier and the AIS;
(ii) the initial speed and the percentage change evoked by CGS 21680 puff onto nodes, which did not differ significantly between rats and mice (P = 0.43 and P = 0.15, respectively); and

(iii) the initial speed and the percentage change evoked by Ca²⁺ uncaging in perinodal astrocytes, which did not differ significantly between rats and mice (P = 0.08 and P = 0.93, respectively).

Animals of both sexes were used because of increasing awareness of the fact that gender can play a role in determining function. For major results, we found no differences between the two sexes, for example, in

(i) the presence of A₂aRs and HCN channels at nodes of Ranvier and the AIS;
(ii) the initial resting membrane potential and the change evoked by CGS 21680 puff onto the AIS, which did not differ significantly
between males and females (F = 0.69 and 0.75 respectively); and (iii) the initial speed and the percentage change evoked by CGS 21680 puff onto nodes, which did not differ significantly between males and females (F = 0.3 and P = 0.45, respectively).

REFERENCES AND NOTES

ACKNOWLEDGMENTS

We thank A. Goureau, M. Häusser, C. Mady, D. Rusakov, M. Shah, H. Shina, and V. Yazovsky for comments on the manuscript. Funding: This work was supported by European Research Council (BrainEnergy) and Wellcome Trust Investigator Awards (090222/Z/12/Z and 236366/Z/20/Z) to D.L.S and P.J.B. This research was funded in part by grants 099222/Z/12/Z and 073/05/2012–00 from the Medical Research Council (MRC) of the United Kingdom and the University of Edinburgh from P.J.B and D.L.S. Funding: MDAR Reproducibility Checklist. All data are available in the manuscript or the supplementary materials. Thy1-Caspr-GFP mice are available under a material transfer agreement with the University of Edinburgh from P.J.B. This research was funded in part by grants 090222/Z/12/Z and 236366/Z/20/Z from the Wellcome Trust, a c4ilnt Organization. The authors will make the Author Accepted Manuscript (AAM) version available under a CC-BY public copyright license. Author contributions: J.L. performed all electrophysiological and live imaging experiments. T.Q. and J.L. performed the immunohistochemistry experiments. L.A., J.L., and D.A. performed computer simulations. D.L.S. and P.J.B. produced the Thy1-Caspr-GFP mouse. J.L. and D.A. conceived the project, analyzed the data, and wrote the first draft of the manuscript. All other authors commented on the manuscript. Competing interests: The authors declare no competing financial interests. Data and materials availability: All data are available in the manuscript or the supplementary materials. Thy1-Caspr-GFP mice are available under a material transfer agreement with the University of Edinburgh from P.J.B. and D.L.S. Code used for simulations is freely available (S3, S4).

SUPPLEMENTARY MATERIALS

sciencedoi.org/10.1126/science.aab2858

Figs. S1 to S7

Movies S1 to S3

Reference (S5)

MDAR Reproducibility Checklist

View/request a protocol for this paper from Bio-protocol

2 March 2021, resubmitted 5 July 2021

Accepted 1 September 2021

10.1126/science.aab2858

Lezmy et al., Science 374, eabh2858 (2021) 10 October 2021
Astrocyte Ca-evoked ATP release regulates myelinated axon excitability and conduction speed
Jonathan Lezmy, Lorena Arancibia-Cárcamo, Tania Quintela-López, Diane L. Sherman, Peter J. Brophy, David Attwell

Science, 374 (6565), eabh2858. • DOI: 10.1126/science.abh2858

Glia control white matter information flow
The myelinated axons of the white matter mediate rapid information transmission between the brain’s processing nodes. Axonal excitability and conduction speed are key determinants of neural circuit function, but it is largely unknown how they are regulated. Lezmy et al. examined the effects of adenosine on the functional properties of myelinated axons. They observed activity-dependent calcium rise in astrocyte processes, calcium-triggered ATP release from astrocytes, activation of adenosine receptors in the axon initial segment and the nodes of Ranvier, increased cyclic AMP concentration, activation of HCN2 channels, and depolarization of axons by 5 to 10 millivolts. This molecular pathway enabled astrocytes to increase the excitability of pyramidal neurons and to profoundly decrease the axonal conduction velocity. Astrocytes thus control signaling speed in myelinated axons. —PRS

View the article online
https://www.science.org/doi/10.1126/science.abh2858
Permissions
https://www.science.org/help/reprints-and-permissions