Purinergic control of vascular tone in the retina

Joanna Kur and Eric A. Newman

Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA

Key points

- The blood supply to the CNS is controlled by the tone of arteries and arterioles. However, little is known about purinergic regulation of vascular tone in the CNS.
- We have investigated purinergic control of vascular tone in the in vivo rat retina.
- Reducing endogenous ATP levels by enzyme degradation and inhibiting purinergic signalling with P2X receptor antagonists decreases the tone of retinal arterioles. Raising ATP levels increases vessel tone.
- Experiments using fluorocitrate to poison the metabolism of glial cells suggest glia are a source of the ATP that tonically constricts retinal vessels.
- The results suggest a novel mechanism of local control of vascular tone through activation of vascular smooth muscle cell P2X receptors.

Abstract

Purinergic control of vascular tone in the CNS has been largely unexplored. This study examines the contribution of endogenous extracellular ATP, acting on vascular smooth muscle cells, in controlling vascular tone in the in vivo rat retina. Retinal vessels were labelled by i.v. injection of a fluorescent dye and imaged with scanning laser confocal microscopy. The diameters of primary arterioles were monitored under control conditions and following intra-vitreal injection of pharmacological agents. Apyrase (500 units ml\(^{-1}\)), an ATP hydrolysing enzyme, dilated retinal arterioles by 40.4 ± 2.8%, while AOPCP (12.5 mM), an ecto-5'-nucleotidase inhibitor that increases extracellular ATP levels, constricted arterioles by 58.0 ± 3.8% (\(P < 0.001\) for both), demonstrating the importance of ATP in the control of basal vascular tone. Suramin (50 μM), a broad-spectrum P2 receptor antagonist, dilated retinal arterioles by 50.9 ± 3.7% (\(P < 0.001\)). IsoPPADS (300 μM) and TNP-ATP (50 μM), more selective P2X antagonists, dilated arterioles by 41.0 ± 5.3% and 55.2 ± 6.1% respectively (\(P < 0.001\) for both). NF023 (50 μM), a potent antagonist of P2X1 receptors, dilated retinal arterioles by 32.1 ± 2.6% (\(P < 0.001\)). A438079 (500 μM) and AZ10606120 (50 μM), P2X7 antagonists, had no effect on basal vascular tone (\(P = 0.99\) and \(P = 1.00\) respectively). In the ex vivo retina, the P2X1 receptor agonist α,β-methylene ATP (300 nM) evoked sustained vasoconstrictions of 18.7 ± 3.2% (\(P < 0.05\)). In vivo vitreal injection of the gliotoxin fluorocitrate (150 μM) dilated retinal vessels by 52.3 ± 1.1% (\(P < 0.001\)) and inhibited the vasodilatory response to NF023 (50 μM, 7.9 ± 2.0%; \(P < 0.01\)). These findings suggest that vascular tone in rat retinal arterioles is maintained by tonic release of ATP from the retina. ATP acts on P2X1 receptors, although contributions from other P2X and P2Y receptors cannot be ruled out. Retinal glial cells are a possible source of the vasoconstricting ATP.
Introduction

Blood flow in the brain is regulated by the tone of cerebral arteries and arterioles. Vascular tone, defined as the degree of vessel constriction, is controlled by a number of mechanisms. These include extrinsic innervation from the autonomic nervous system, intrinsic innervation from distant subcortical neurons and cortical interneurons, and the local release of vasoactive agents from vascular cells and glial cells (Hamel, 2006). A number of vasoactive agents modulate cerebrovascular tone, including noradrenaline, released by sympathetic terminals and by locus coeruleus neurons (Bekar et al. 2012); serotonin, released by raphe nucleus neurons (Cohen et al. 1996); and neuropeptides, released from local interneurons (Cauli et al. 2004). The primary dilatory influences on vessels are nitric oxide, derived from endothelial cells, autonomic nitrergic nerves and brain neurons (Toda et al. 2009); acetylcholine, released by basal forebrain neurons (Hamel, 2004); and prostaglandins from vascular endothelial cells, neurons and glial cells (Attwell et al. 2010).

ATP, which is released from subcortical sympathetic neurons (Burnstock, 2007), local neurons (Piet & Jahr, 2007) and glial cells (Pascual et al. 2005) may also contribute to the vascular tone of cerebral vessels. ATP exerts both vasoconstricting and vasodilating influences acting on two types of P2 receptors, ligand-gated P2X cation channels and G-protein-coupled P2Y receptors (Lewis et al. 2000; Horiuichi et al. 2001). To date, there have been few reports addressing whether ATP contributes to the basal tone of cerebral vessels. However, it is known that ATP, when co-released with noradrenaline from perivascular sympathetic nerves, acts on vascular smooth muscle cell P2X1 receptors to transiently constrict vessels (Burnstock, 2007).

The retina offers unique advantages in studying the purinergic control of vascular tone. The intrinsic retinal and brain neurovascular units share many anatomical and physiological features (Kur et al. 2012) and the retinal vasculature can be imaged non-invasively through the optics of the eye. The intrinsic retinal vessels supply the inner two-thirds of the retina. A second vascular bed, the choroidal vessels, supplies the outer one-third, principally the photoreceptors (Kur et al. 2012). Owing to lack of extrinsic sympathetic innervation of the intrinsic retinal vasculature (Ye et al. 1990), vessel tone in the retina is controlled solely by autoregulatory mechanisms and by local release of vasoactive agents from neurons, glia and vascular cells.

Little is known about the factors and mechanisms that control the tone of retinal vessels, although nitric oxide and prostaglandin release has been shown to reverse vascular tone in animal and human studies (Braztitkos et al. 1993; Dorner et al. 2003). Müller cells, the principal glial cells of the retina (Newman & Reichenbach, 1996), release ATP (Newman, 2001) and retinal vessels constrict in response to ATP application (Kawamura et al. 2003; Scholfield et al. 2007), suggesting that ATP might contribute to the basal tone of retinal vessels.

We have now investigated whether purinergic signalling contributes to the maintenance of vascular tone in the intrinsic retinal vasculature. We find that reducing endogenous ATP levels by enzyme degradation and inhibiting purinergic signalling with P2X receptor antagonists decreases the tone of retinal arterioles. Conversely, raising ATP levels increases vessel tone. In addition, poisoning retinal glial cell metabolism results in the dilatation of retinal vessels. These results suggest that tonically released ATP acting on vascular smooth muscle cells generates tone in retinal arterioles. Retinal glial cells are a probable source of the ATP.

Methods

Studies were conducted in accordance with guidelines of the Institutional Animal Care and Use Committee of the University of Minnesota (approval no. 1004A80712). Male Long Evans rats (7–10 weeks old, 250–350 g) were purchased from Harlan Laboratories, Inc., Indianapolis, IN, USA. They were housed in rooms maintained on a 14:10 h light/dark cycle at 22°C. Animals were provided with Harlan Rodent Diet and water ad libitum. A maximum of three rats were housed in one cage.

In vivo rat preparation

The in vivo rat preparation has been described previously (Srienc et al. 2012). Briefly, the initial surgery was performed under isoflurane anaesthesia (2% in 30% IN, USA. They were housed in rooms maintained on a 14:10 h light/dark cycle at 22°C. Animals were provided with Harlan Rodent Diet and water ad libitum. A maximum of three rats were housed in one cage.

© 2013 The Authors. The Journal of Physiology © 2013 The Physiological Society

Downloaded from J Physiol (jp.physoc.org) at UNIV OF MINNESOTA on March 24, 2014
During experiments, animals were artificially ventilated (35–50 breaths per min; CWE SAR-830-P, Ardmore PA, USA) with a mixture of O2 and N2 (30%/70%). Neuromuscular blockade was provided by gallamine triethiodide (20 mg kg\(^{-1}\) bolus, maintained at a rate of 20 mg kg\(^{-1}\) h\(^{-1}\), i.v.) to minimize eye movements. Mean arterial blood pressure (Pressure Monitor BP-1; World Precision Instruments, Sarasota, FL, USA), end-tidal CO2 (microCapStar; CWE, Ardmore, PA, USA) and blood O2 saturation levels (MouseOx; Starr Life Sciences Corp., Oakmount, PA, USA) were monitored continuously. These parameters were employed to ensure adequate depth of the anaesthesia throughout the experiment. Blood \(P_{O_2}\), \(P_{CO_2}\) and pH were sampled periodically (Radiometer, ABL 800 Flex, WestLake, OH, USA), and maintained within physiological norms (Tables 1 and 2). Blood pressure, measured before intravitreal injection of pharmacological agents and after injection, when the steady-state diameter of arterioles was measured, did not vary significantly (Table 1). Core body temperature was monitored and maintained at 37°C (TC-1000 Temperature Controller; CWE, Ardmore, PA, USA). Following experiments, animals were killed by injection of 40 mM KCl (1 ml kg\(^{-1}\), i.v.).

Blood vessel labelling and diameter measurements

Retinal vessels were labelled by injection of a fluorescent dye (Fig. 1B), either fluorescein- or rhodamine B-isothiocyanate, conjugated to high-molecular-weight dextran (2000 kDa and 70 kDa respectively; Sigma, St. Louis, MO, USA) dissolved in saline (1–2 ml of 1.5% solution, infused over 5 min, i.v.). Cromolyn (20 mg kg\(^{-1}\)) was administered i.v. to prevent dextran-evoked mast cell activation (Berstad, 1982; Blom et al. 2004). The retina was imaged through the cornea and lens with an Olympus FluoView 1000 confocal scanning laser microscope equipped with a UPlanSApo 4× dry objective, 0.16 NA (Fig. 1A and B). Fluorescein and rhodamine B dyes were excited at 488 and 559 nm respectively. Arterioles were distinguished from venules based on their morphology, i.e. caliber and branching pattern, and based on their filling pattern following i.v. injection of dye – retinal arterioles filled before venules. The luminal diameters of first-order arterioles were measured from line scans of sequences of high-power (0.81 \(\mu\)m per pixel) retinal images (Fig. 1C–E) using a custom MatLab algorithm. Image acquisition was limited to small regions of the retina containing a single arteriole, and venular responses were not assessed.

Intravitreal injections

Pharmacological agents targeting extracellular ATP levels and P2 receptors on the abluminal face of vessels were injected intravitreally using a micro-advancer device (Hultman & Newman, 2011). This instrument positions a 25-gauge guard needle within the vitreous humour with a standard micromanipulator. A 31-gauge injection needle attached to a Hamilton syringe is then advanced through the guard needle with a manually controlled lead screw (Fig. 1A and B). The position of the injection needle and guard needle can be adjusted independently and the injection needle can be withdrawn, refilled and reinserted while the guard needle remains in place. This permits different solutions to be injected sequentially. The injection site was within 200 \(\mu\)m of the retinal surface and within 250 \(\mu\)m of the arteriole being analysed. All drugs were introduced into the vitreous in a small volume of vehicle (3 \(\mu\)l or 10 \(\mu\)l) to limit elevation of intraocular pressure and reflux of the injection solution. Reported drug concentrations represent the estimated end vitreal concentrations, which were calculated assuming a 60 \(\mu\)l vitreal volume, as previously estimated (Berkowitz et al. 1998), and a homogeneous distribution of the drug throughout the vitreous humour.

In preliminary studies, we tested intravitreal injections of suramin, 8,8′-[carboxylbis(imino-3,1-phenylenecarbonyl)]bis-1,3,5-naphthalene-trisulphonic (NF023), and 2′,3′-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP), at doses of 5, 50 and 500 \(\mu\)M, and found 50 \(\mu\)M to be the minimal dose that produced a change in vessel tone. Pyridoxalphosphate-6-azophenyl-2′,5′-disulphonic acid (isoPPADS) was effective at 300 \(\mu\)M, but not 30 \(\mu\)M. These values are within the range of concentrations reported previously for *in situ* vascular preparations (Lewis et al. 2000; Horiuchi et al. 2001; Koltsova et al. 2009).

Ex vivo rat retina preparation

The *ex vivo* whole mount retina preparation has been described previously (Newman, 2001). Animals were killed by an overdose of isoflurane and bilateral pneumothorax, and eyes were enucleated. Following removal of the vitreous, retinal pieces were placed in a chamber and superfused at 2–3 ml min\(^{-1}\) with HEPES-buffered saline (22–24°C) bubbled with air. Retinas were imaged with a 40× water immersion objective (Olympus LUMPlan Fl, 0.80 NA), infrared differential interference contrast optics and a CCD camera (CoolSnap ES; Roper Scientific, Duluth, GA, USA). Images of first- and second-order retinal arterioles were captured using MetaMorph image processing software (Molecular Devices, Downingtown, PA, USA) and luminal diameters measured manually. Arterioles in the *ex vivo* preparation lacked tone and experiments were conducted without the addition of drugs to pre-constrict vessels. Hence, only vasoconstrictive responses were observed.

Drugs and solutions

Stock solutions of drugs for intravitreal injections were dissolved in saline containing (in mM): 132.5 NaCl, 3
KCl, 2 CaCl₂, 1 MgSO₄, 1 NaH₂PO₄ and 10 HEPES, pH 7.4. The HEPES-buffered saline solution used in ex vivo experiments contained (in mM): 128 NaCl, 2 KCl, 2 CaCl₂, 1 MgSO₄, 0.5 NaH₂PO₄, 15 dextrose and 20 HEPES, pH 7.4. Apyrase, α,β-methylene ADP (AOPCP), N-[2-[(2-hydroxyethyl)amino]ethyl]amino]-5-quino liny]-2-tricyclo[3.3.1.13,7]dec-1-ylacetamide dihydrochloride (AZ10606120), suramin, ATP, fluorocitrate, endothelin-1 and cromolyn were purchased from Sigma (St. Louis, MO, USA) and ATP₃S, isoPPADS, TNP-ATP, NF023, 3-[5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl] methyl|pyridine (A430879), and α,β-methylene ATP from Tocris (Bristol, UK).

The fluorocitrate solution was prepared as described previously (Paulsen et al. 1987). Briefly, 8 mg of D,L-fluorocitric acid, barium salt was dissolved in 1 ml of 0.1 M HCl and three drops of 0.1 M Na₂SO₄ added to precipitate the barium. Two ml of 0.1 M Na₂HPO₄ was added and the suspension centrifuged at 1000 g for 5 min. The supernatant containing the fluorocitrate was adjusted to pH 7.4. The concentration of fluorocitrate used in our experiments (150 μM in the vitreous humour) was similar to that of a previous in vivo study showing selective inhibition of glial cell metabolism resulting in decreased ATP levels (Lian & Stringer, 2004).

Drugs were delivered either by intravitreal injection (in vivo) or by superfusion (ex vivo). Hence, observed effects on arterioles most probably reflect actions of the drugs at the abluminal face of the vessels.

Data analysis

Experimental values are reported as mean ± S.E.M., with n representing the number of rats (in vivo experiments) or the number of retinal preparations (ex vivo experiments). Changes in vessel diameter are expressed as a percentage change from baseline diameter in the text and in absolute units in Tables 3 and 4. The recovery from arteriolar dilatation following intravitreal injection of vehicle (control experiments) was fit by a first-order exponential. Vessel diameter data followed a Gaussian distribution, as shown by the normality test (Shapiro–Wilk test). Statistical analysis of within-group variation (i.e. response to intravitreal injection) was performed with two-tailed paired t test or repeated measures one-way ANOVA followed by Tukey’s multiple comparison test, as appropriate. Multigroup comparisons, i.e. between responses to intravitreal injections of pharmacological agents and vehicle controls, were tested for significance with the standard least squares method, unless otherwise indicated. When significant results were found, a post hoc Tukey’s test was used. Significance was defined as P < 0.05. Descriptive statistics, normality test and analysis of variance were performed using JMP software (SAS Institute Inc., Cary, NC, USA).

Results

The tone of retinal vessels in vivo was assessed by monitoring the diameter of first-order arterioles visualized by i.v. injection of a fluorescent dye. Vessels were imaged with confocal microscopy. Vessel diameter was measured at an eccentricity of 250–750 μm from the edge of the optic disk in the superior nasal quadrant of the retina (Fig. 1B). The role of purinergic signalling in controlling vessel tone was studied by injecting purinergic agonists...
We initially investigated the importance of purinergic signalling for the regulation of basal vascular tone in the retina by changing endogenous ATP levels. ATP levels were lowered with apyrase (500 units ml⁻¹), an enzyme that hydrolyses extracellular ATP and ADP (Zimmermann & Braun, 1996; Resta et al. 2005). Apyrase dilated retinal arterioles by 40.4 ± 2.8% (n = 4, P < 0.001 vs. vehicle control; Fig. 2A, Table 3), indicating that endogenous ATP or ADP constricted vessels. We then raised endogenous ATP and ADP levels with the ecto-5′-nucleotidase inhibitor AOPCP (12.5 mM), which blocks the conversion of AMP to adenosine, thus increasing extracellular ATP and ADP levels (Melani et al. 2005). AOPCP constricted arterioles by 58.0 ± 3.8% (n = 3, P < 0.001 vs. vehicle control; Fig. 2A, Table 3).

Altered endogenous ATP levels
As AOPCP application reduces adenosine levels as well as increases ATP and ADP levels, it is possible that the vasoconstriction produced by AOPCP was due to a decrease in adenosine-mediated vasodilatation rather than to an ATP- or ADP-mediated vasoconstriction. However, we found that when the P2 receptor antagonist suramin (500 μM) was applied following AOPCP-induced vasoconstriction, vessels dilated to a diameter greater than control (data not shown), demonstrating that the AOPCP-induced constriction was mediated by ATP or ADP activation of P2 receptors rather than by a reduction of P1 adenosine receptor activation.

Exogenous ATPγS

Previous studies in the retina have demonstrated that arteriole constrictions can be induced by exogenous ATP (Scholfield et al. 2007). As extracellular ATP is rapidly metabolized to adenosine, we assessed vascular responses to the slowly hydrolysable ATP analogue ATPγS. Vitreal injection of 10 μM ATPγS caused a biphasic response (Figs 1E and 2B). The diameter initially decreased by 42.8 ± 9.1% (n = 3, P < 0.001 vs. vehicle control) and then increased to a dilated steady-state level of 22.2 ± 6.2% greater than baseline (Fig. 2D, Table 3). The dilatory

Table 3. The effects of altered ATP levels and P2X receptor antagonists on arteriole diameter in vivo

<table>
<thead>
<tr>
<th>Compound</th>
<th>Baseline diameter</th>
<th>Diameter following intravitreal injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicles</td>
<td>3 μl saline vehicle (n = 5)</td>
<td>29.3 ± 2.2</td>
</tr>
<tr>
<td></td>
<td>10 μl saline vehicle (n = 5)</td>
<td>31.9 ± 1.4</td>
</tr>
<tr>
<td></td>
<td>Fluorocitrate vehicle (n = 3)</td>
<td>37.7 ± 5.1</td>
</tr>
<tr>
<td>Compounds changing ATP levels</td>
<td>Apyrase (n = 4)</td>
<td>35.8 ± 3.1</td>
</tr>
<tr>
<td></td>
<td>AOPCP (n = 3)</td>
<td>37.8 ± 1.0</td>
</tr>
<tr>
<td></td>
<td>peak ATPγS (n = 3)</td>
<td>35.9 ± 3.4</td>
</tr>
<tr>
<td>P2X antagonists</td>
<td>Suramin (n = 3)</td>
<td>33.2 ± 1.0</td>
</tr>
<tr>
<td></td>
<td>isoPPADS (n = 3)</td>
<td>33.8 ± 2.7</td>
</tr>
<tr>
<td></td>
<td>TNP-ATP (n = 4)</td>
<td>33.3 ± 2.2</td>
</tr>
<tr>
<td></td>
<td>NF023 (n = 4)</td>
<td>32.5 ± 2.1</td>
</tr>
<tr>
<td></td>
<td>A438079 (n = 3)</td>
<td>38.2 ± 3.1</td>
</tr>
<tr>
<td></td>
<td>AZ10606120 (n = 3)</td>
<td>34.8 ± 1.0</td>
</tr>
<tr>
<td>Gliotoxin</td>
<td>Fluorocitrate (n = 4)</td>
<td>38.0 ± 0.6</td>
</tr>
<tr>
<td>Gliotoxin – P2X1 antagonist (n = 4)</td>
<td>Fluorocitrate</td>
<td>39.9 ± 1.4</td>
</tr>
<tr>
<td></td>
<td>Endothelin-1</td>
<td>53.4 ± 1.7</td>
</tr>
<tr>
<td></td>
<td>NF023</td>
<td>40.7 ± 3.1</td>
</tr>
</tbody>
</table>

As a result of altered ATP levels and P2X receptor antagonists, arteriole diameter was measured in vivo and ex vivo. Baseline diameters from first-order arterioles were obtained using different measurement techniques. In addition, results include data from both first- and second-order arterioles. For P2X agonists alone and after pretreatment with either fluorocitrate or NF023, data represent independent observations from a minimum of six preparations and three animals each. Note that baseline diameters from in vivo and ex vivo experiments cannot be compared directly as values were obtained using different measurement techniques. In addition, ex vivo results include data from both first- and second-order arterioles, whereas in vivo results are from first-order arterioles only.

Table 4. The effects of P2 receptor agonists on arteriole diameter ex vivo

<table>
<thead>
<tr>
<th>Agonist</th>
<th>Baseline diameter</th>
<th>Sustained diameter</th>
<th>After pretreatment with fluorocitrate</th>
<th>After pretreatment with NF023</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 nM α,β-methylene ATP</td>
<td>25.5 ± 1.2</td>
<td>17.4 ± 1.3***</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>0.1 μM ATP</td>
<td>27.3 ± 1.2</td>
<td>26.7 ± 1.5</td>
<td>25.7 ± 1.5</td>
<td>25.1 ± 1.2</td>
</tr>
<tr>
<td>1 μM ATP</td>
<td>26.6 ± 1.6</td>
<td>26.8 ± 1.5</td>
<td>25.4 ± 1.3</td>
<td>25.1 ± 1.2</td>
</tr>
<tr>
<td>10 μM ATP</td>
<td>26.0 ± 1.1</td>
<td>23.5 ± 1.4**</td>
<td>25.4 ± 1.3</td>
<td>23.4 ± 1.4**</td>
</tr>
<tr>
<td>100 μM ATP</td>
<td>25.4 ± 1.1</td>
<td>19.1 ± 1.1***</td>
<td>24.2 ± 1.4</td>
<td>20.0 ± 1.4***</td>
</tr>
<tr>
<td>1 mM ATP</td>
<td>23.0 ± 0.9</td>
<td>13.9 ± 1.5***</td>
<td>23.5 ± 1.2</td>
<td>13.1 ± 0.8***</td>
</tr>
</tbody>
</table>

Arteriole diameter in μm, means ± s.e.m. *P < 0.05 and ***P < 0.001 vs. baseline. Data for P2 agonists alone and after pretreatment with either fluorocitrate (150 μM, 45 min) or NF023 (50 μM, 5 min) represent independent observations from a minimum of six preparations and three animals each. Note that baseline diameters from in vivo and ex vivo experiments cannot be compared directly as values were obtained using different measurement techniques. In addition, ex vivo results include data from both first- and second-order arterioles, whereas in vivo results are from first-order arterioles only.
Figure 2. Changes in retinal ATP levels and P2X receptor antagonists alter arteriole diameter in vivo

A, vitreal injection of apyrase (500 units ml⁻¹), an ATP hydrolysing enzyme that reduces endogenous ATP levels, dilated vessels while AOPCP (12.5 mM), an ecto-5'-nucleotidase inhibitor which increases ATP levels, constricted vessels. B, injection of ATPγS (10 μM), a slowly hydrolysable ATP analogue, evoked a large transient vasconstriction followed by a small, sustained vasodilatation. C, suramin (500 μM), a non-selective P2 receptor antagonist; isoPPADS (300 μM), a P2X receptor antagonist; TNP-ATP (50 μM), a P2X1, P2X3 and P2X2/3 receptor antagonist; and NF023 (50 μM), a P2X1 receptor antagonist, all evoked dilatations of retinal arterioles. A438079 (500 μM) and AZ10606120 (50 μM), P2X7 receptor antagonists, had no effect on arteriole diameter. Vehicle injections (3 μl and 10 μl saline) evoked small, transient vasodilatations. Saline injection volumes in A and B matched the volumes of injected drugs in the respective trials. Traces in A differ in appearance.

© 2013 The Authors. The Journal of Physiology © 2013 The Physiological Society
component of the response was not significantly different from baseline \((n = 3, \text{NS}, P = 0.26)\).

P2X receptor antagonists

We further assessed the contribution of endogenous ATP to basal tone by testing vascular responses to a wide range of purinergic receptors antagonists. If tonic ATP-evoked vasoconstriction is present in the retinal vasculature, ATP receptor antagonists should reduce vascular tone. The broad-spectrum P2 receptor antagonist suramin \((50 \mu M)\) induced a \(50.9 \pm 3.7\%\) dilatation of retinal arterioles \((n = 3, P < 0.001 \text{ vs. vehicle control}; \text{Fig. } 2C, \text{Table } 3)\), supporting the role of purinergic signalling in controlling basal vessel tone.

Suramin, in addition to blocking purinergic receptors, has been shown to disrupt G-protein-coupled signalling by blocking association of G protein \(\alpha\) and \(\beta/\gamma\) sub-units (Chung & Kermode, 2005). We therefore examined whether suramin treatment compromised the efficacy of a vasoconstricting agent acting via G-protein-coupled receptors. Endothelin-1 (750 nM), a well-characterized vasoactive peptide secreted by stimulated endothelial cells (Stewart, 2012; Hinds, 2013), was injected into the vitreous following pretreatment with suramin \((500 \mu M)\). The vasoconstricting action of endothelin-1 was unaffected by suramin pretreatment (data not shown) suggesting that suramin did not block G-protein signalling in vascular smooth muscle cells.

We used more selective purinergic antagonists to identify the purinergic receptor(s) responsible for generating vessel tone. isoPPADS \((300 \mu M)\), which blocks P2X but not P2Y receptors (Connolly, 1995), dilated arterioles by \(41.0 \pm 5.3\%\) \((n = 3, P < 0.001 \text{ vs. vehicle control}; \text{Fig. } 2C, \text{Table } 3)\). TNP-ATP \((50 \mu M)\), which blocks P2X1, P2X3 and P2X2/3 receptors (Lewis et al., 1998), induced a \(55.2 \pm 6.1\%\) dilatation \((n = 4, P < 0.001 \text{ vs. vehicle control})\). NF023 \((50 \mu M)\), a selective antagonist of P2X1 receptors (Soto et al., 1999), evoked a \(32.1 \pm 2.6\%\) dilatation \((n = 4, P < 0.001 \text{ vs. vehicle control})\). Together, these results indicate that purinergic vasoconstriction is mediated, at least in part, by P2X1 receptors.

ATP has been shown to contract pericytes from rat microvessels by activating P2X7 receptors (Kawamura et al., 2003). However, we found that two structurally distinct antagonists of P2X7 receptors, A438079 \((500 \mu M)\) and AZ10606120 \((50 \mu M)\) had no effect on basal vascular tone \((n = 3, P = 0.99 \text{ and } n = 3, P = 1.00 \text{ respectively}; \text{Fig. } 2C, \text{Table } 3)\). Therefore, it is unlikely that P2X7 receptors contribute to tonic vasoconstriction of retinal arterioles.

Ex vivo agonist studies

Our results indicate that P2X1 receptors, at least in part, control the basal tone of retinal arterioles. This presents a puzzle as P2X1 receptors are generally believed to mediate transient, but not sustained constriction of vascular smooth muscle cells (Lamont et al., 2006). We therefore tested the effect of the selective P2X1 receptor agonist \(\alpha,\beta\)-methylene ATP (Burnstock, 2007). We used the *ex vivo* retinal whole mount preparation, permitting us to rapidly change superfusion solutions. We found that during bath application of \(\alpha,\beta\)-methylene ATP \((300 \text{ nM and } 3 \mu M)\) a transient constriction of primary retinal arterioles followed by a smaller sustained constriction was generated (Fig. 3A and B, Table 4). Peak and sustained constriction in response to \(300 \text{ nM } \alpha,\beta\)-methylene ATP was \(43.3 \pm 6.1\%\) and \(18.7 \pm 3.2\%\) respectively \((n = 9, P < 0.001 \text{ and } P < 0.05 \text{ vs. baseline}; \text{Fig. } 3D, \text{Table } 4)\). Next, we investigated the effect of the P2X1 receptor antagonist NF023 on the \(\alpha,\beta\)-methylene ATP-induced vasoconstriction. When vessels were pretreated with NF023 \((10 \mu M)\), addition of \(\alpha,\beta\)-methylene ATP \((300 \text{ nM})\) had no effect on vessel diameter \((n = 8, P = 0.97 \text{ vs. baseline}; \text{Fig. } 3C \text{ and } D, \text{Table } 4)\), demonstrating that the agonist was acting on P2X1 receptors. NF023 alone had no effect on arteriole diameter \((n = 8, P = 0.96 \text{ vs. baseline}). \text{(NF023 was not capable of producing dilatation in the ex vivo preparation because ex vivo retinal vessels lack tone.) Together, these results indicate that activation of P2X1 receptors evokes both a transient and a sustained vasoconstriction of retinal arterioles.**

Finally, we used the *ex vivo* preparation to determine the minimal concentration of ATP needed to produce sustained constrictions in retinal arterioles. We found that bath application of \(10 \mu M, 100 \mu M \text{ and } 1 \text{ mM} \) ATP produced constrictions of \(9.7 \pm 2.3\% (P < 0.05 \text{ vs. baseline}), 24.3 \pm 4.3\% (P < 0.001 vs. baseline) \text{ and } 40.2 \pm 5.6\% (P < 0.001 \text{ vs. baseline})\) respectively \((n = 6; \text{Fig. } 4A \text{ and } B, \text{Table } 4)\). There were no significant changes in response to

from *in vivo* data showing arteriole diameter changes evoked by altered ATP levels and by vitreal injection of P2X receptor antagonists. Vessel diameters were measured after they reached plateau values. Numbers in parentheses indicate number of rats; error bars denote ± s.e.m.; **\(P < 0.001\) relative to vehicle control. A438079, 3-[(5-[2,3-dichlorophenyl]-1H-tetrazol-1-yl)methyl]pyridine; AOPCP, \(\alpha,\beta\)-methylene ADP; AZ10606120, N-[2-[2-hydroxyethylamino][ethy]-yl][aminol]-5-quino linyl]-2-tricyclo[3.3.1.13,7]dec-1-ylacetamide dihydrochloride; iso PPADS, pyridoxalphosphate-6-azophenyl-2′,5′-disulfonic acid; NF023, 8,8′-[carboxy]-bis[mimino-3,1-phenylene carbonylimino]-bis-1,3,5-naphthalene-trisulphonic; TNP-ATP, 2′,3′-O-(2,4,6-trinitrophenyl)-ATP.
0.1 μM and 1 μM ATP (−3.8 ± 2.2% and −0.3 ± 1.3%, respectively; n = 6, NS vs. baseline, Table 4).

Cellular source of ATP

Glial cells are a probable source of the ATP that tonically constricts retinal vessels (Pascual et al. 2005). We assessed the contribution of glial cells to the control of vascular tone with intravitreal injections of fluorocitrate, a metabolic toxin that inhibits the TCA cycle in glial cells by blocking aconitase (Paulsen et al. 1987), leading to a reduction in glial ATP levels (Lian & Stringer, 2004). Following a delay of 10.0 ± 1.3 min, intravitreal injection of fluorocitrate (150 μM) induced vessel dilatation that plateaued after 28.3 ± 1.4 min. At 45 min after injection, fluorocitrate produced a dilatation of 52.3 ± 1.1% (n = 4, P < 0.001 vs. vehicle control; Fig. 5 and Table 3), similar to the dilatation produced by purinergic antagonists. This result suggests that the ATP responsible for producing vessel tone in the retina may originate, at least in part, from glial cells.

If the vasodilatory action of fluorocitrate is due to a reduction in the release of ATP from glial cells, then arteriole dilatation evoked by purinergic antagonists should be reduced in the presence of fluorocitrate. We tested this by recording changes in arteriole diameter in vivo in response to sequential intravitreal injections of fluorocitrate (150 μM), endothelin-1 (7–12 nM) and NF023 (50 μM). It was necessary to inject endothelin-1, a vasoconstrictive peptide (Stewart, 2012; Hinds, 2013), to restore arteriole tone following fluorocitrate injection so that NF023-evoked vasodilatations, if present, could be observed. As demonstrated above, fluorocitrate injection dilated retinal arterioles (Fig. 6A). Endothelin-1 was then injected to constrict vessels to a pre-fluorocitrate level; there were no significant differences between baseline diameters before fluorocitrate injection and after endothelin-1 treatment (P = 0.67; Table 3). The P2X1 antagonist NF023 was then injected. We found that pretreatment with fluorocitrate inhibited NF023-mediated vasodilatations (n = 4, P < 0.01). In the presence of fluorocitrate, NF023 dilated arterioles by 7.9 ± 2.0%, compared to 32.1 ± 2.6% in controls (Fig. 6 and Table 3). The result suggests that fluorocitrate, presumably by poisoning glial cell metabolism and lowering extracellular ATP levels, reduces activation of P2X1 receptors on vascular smooth muscle cells.

It is conceivable that fluorocitrate acts on vascular cells directly rather than on glial cells to produce vessel dilatation. To control for this possible effect of fluorocitrate, we tested whether pre-incubation with fluorocitrate affects ATP-induced constrictions in the ex vivo preparation. We found that there was no difference in the magnitude of ATP-evoked constrictions following fluorocitrate treatment (150 μM, 45 min) as compared to responses to ATP alone (n = 6, NS, two-way ANOVA; Fig. 4B). This result demonstrates that fluorocitrate has no direct effect on vascular responsiveness to ATP. (Ex vivo arterioles lack vessel tone. Thus, in contrast to in vivo experiments, fluorocitrate did not dilate vessels in the ex vivo preparation; Table 4.)

Discussion

Our results support the hypothesis that ATP provides a tonic level of constriction in retinal vessels. When endogenous ATP levels are lowered, retinal arterioles dilate and when endogenous levels are increased, vessels...
constrict. The purinergic antagonist experiments we conducted indicate that vasoconstriction is mediated, at least in part, by P2X1 receptors. To our knowledge, these results constitute the first in vivo demonstration of local control of vascular tone through P2X1 activation. To our knowledge, these results constitute the first in vivo demonstration of local control of vascular tone through P2X1 activation.

Retinal arterioles dilated to over 150% of their resting diameter when ATP levels were lowered and when P2X receptors were blocked. This indicates that purinergic constriction of the arterioles is responsible for generating a substantial fraction of vascular tone in these vessels. As our in vivo studies were performed in anaesthetized animals, the direct actions of anaesthetics on cellular mechanisms regulating vascular tone should be taken into consideration (Akata, 2007).

Previous electrophysiological studies have indicated that P2X1 receptors inactivate within several hundreds of milliseconds (Burnstock, 2007), raising the question of how these receptors could mediate tonic vasoconstriction. However, exogenous application of the P2X1 agonist α,β-methylene ATP in both rat pial arterioles (Lewis et al. 2000) and afferent renal arterioles (Zhao et al. 2001; Inscho & Cook, 2002) evokes vasoconstrictions with sustained as well as transient components. This is consistent with the results of our ex vivo experiments demonstrating that P2X1 receptors can mediate sustained constriction of rat retinal arterioles.

There are several possible explanations why the activation of P2X1 receptors might mediate tonic vasoconstriction. P2X1 receptor activation results in the depolarization of smooth muscle cells and can elicit Ca²⁺ influx through voltage-dependent L-type Ca²⁺ channels. This influx results in sustained vasoconstriction (Inscho & Cook, 2002). Ca²⁺ influx through P2X1 receptors can also trigger the release of Ca²⁺ from intracellular stores, leading to an amplified Ca²⁺ increase (Mironneau et al. 2001; Povstyan et al. 2011). In addition, other P2X receptor isoforms, with lower rates of desensitization, may form functional heteromeric channels with P2X1 receptors and contribute to a sustained vascular response (Harhun et al. 2010). Genetic knockout and pharmacological blockade studies of pressure-dependent autoregulation of renal arterioles demonstrate that P2X1 receptors can mediate tonic vasoconstriction (Inscho et al. 2003).

There is growing evidence that endothelium-derived polyphosphates, including uridine adenosine tetraphosphate (UpA₄) and adenosine 5′-tetraphosphate (Ap₄), can mediate vasoconstriction, at least in part, by activation of P2X1 receptors (Tolle et al. 2008). Whether these nucleotides contribute to the control of vascular tone in the retina remains to be examined.

The purinergic antagonists we employed were only effective in reducing vascular tone when used at relatively high concentrations. It could be argued that at such concentrations the antagonists were not selective.

Figure 4. ATP-mediated sustained constriction of retinal arterioles ex vivo

A, superfusate application of 10 μM, 100 μM and 1 mM ATP evoked transient and sustained vasoconstriction. Dashed line represents onset of ATP application. B, filled squares: summary data for six retinal preparations from four animals showing the arteriole response to increasing concentrations of ATP (measured at the end of agonist application, 100 s; *P < 0.05, ***P < 0.001, relative to baseline). Open circles: pretreatment with the gliotoxin fluorocitrate (150 μM, 45 min) did not affect the ATP-evoked constrictions of retinal arterioles (n = 6 retinal preparations from three animals, not significant for comparison between ATP alone and after pretreatment with fluorocitrate).

Figure 5. Fluorocitrate-induced dilatation of retinal arterioles in vivo

A, intravitreal injection of the gliotoxin fluorocitrate (150 μM) dilated retinal arterioles. Vehicle alone had no effect on arteriole diameter. B, summary data showing the change in arteriole diameter in response to vehicle and fluorocitrate measured 45 min after injection. Numbers in parentheses indicate number of rats. ***P < 0.001, relative to vehicle control.
However, the EC50s of purinergic antagonists have been shown to be ~15,000-fold higher in intact vascular preparations compared to isolated smooth muscle cells due to the metabolic breakdown of antagonists in intact tissue (Lewis et al. 1998). In addition, we found that the selective P2X7 antagonist A438079 was ineffective in reducing vascular tone, indicating that even at a concentration of 500 μM, this drug retained its selectivity and did not block the purinergic receptors responsible for generating tone.

It is conceivable that our purinergic antagonists could be acting upstream from vascular P2X receptors by altering neuronal activity. We believe this to be unlikely, as suramin does not reduce neuronal activity in the retina, at least in retinal ganglion cells (Newman, 2005).

While the effects of P2 receptor antagonists are consistent with the hypothesis that ATP provides a tonic level of constriction in retinal arterioles, the biphasic response to ATPγS, a slowly hydrolysable analogue of ATP, is somewhat surprising. The biphasic response may be due to ATPγS activation of P2Y receptors on vascular endothelial cells as well as P2X receptors on vascular smooth muscle cells, resulting in vasoconstriction followed by delayed dilatation. In agreement with this proposal and our results, Horiuchi et al. (2003) showed that in rat intracerebral arterioles, an initial ATPγS-evoked constriction was followed by a dilatation resulting from P2Y1 and/or P2Y2 receptor stimulation.

Where is ATP acting?

It is probable that the endogenous ATP contributing to the tone of retinal vessels is acting directly on P2X receptors on vascular smooth muscle cells. P2X1 receptors are expressed on vascular smooth muscle cells in peripheral and cerebral vessels (Nori et al. 1998; Lewis & Evans, 2001). P2X1 immunoreactivity has been observed in the retina but has not been localized to blood vessels (Yazulla & Studholme, 2004).

ATP could also be acting on vascular endothelial cells or on retinal neurons or glial cells, which express P2X receptors (Burnstock, 2007). ATP action on endothelial cells is unlikely, as activation of endothelial purinergic receptors normally produces vasodilatation rather than vasoconstriction (Horiuchi et al. 2001). Action on retinal glial cells is also unlikely, as activation of purinergic receptors on glial cells evokes glial Ca2+ increases, leading to vasodilatation rather than vasoconstriction (Mishra et al. 2011; Srienc et al. 2012). ATP could be stimulating or inhibiting retinal neurons, although this is unlikely as purinergic antagonists do not substantially alter neuronal activity (Newman, 2005).

Cellular origin of ATP

Glia are the probable source of the ATP that tonically constricts retinal vessels. We have shown previously that retinal glial cells release ATP when stimulated (Newman, 2001). In addition, astrocytes in the brain release ATP tonically (Pascual et al. 2005). Our fluorocitrate experiments also support the view that ATP release from glial cells is responsible for controlling vessel tone. When glial cell metabolism is poisoned with fluorocitrate, retinal arterioles dilate. This dilatation is due to reduced activation of P2 receptors, presumably due to lowered extracellular ATP levels at the abluminal face of vessels.

Fluorocitrate-induced inhibition of glial metabolism has previously been shown to decrease glial ATP content (Lian & Stringer, 2004), which probably impairs ATP release and lowers interstitial ATP levels. In addition, genetic ablation of Müller cells, the principal glial cells of the retina (Newman & Reichenbach, 1996) results in the dilatation of retinal vessels (Shen et al. 2012). It is worth noting that in our ex vivo experiments, ATP levels of 10 μM were sufficient to produce tonic constriction of retinal vessels. Tonic release
of ATP from brain astrocytes produces extracellular ATP levels of approximately 10 μM as well (Pascual et al. 2005). This observation further supports a glial-mediated mechanism of the generation of vascular tone.

ATP is rapidly hydrolysed to adenosine once it is released into the extracellular space. Thus, the cells releasing ATP must be in close proximity to blood vessels to evoke vasoconstriction. In this respect, retinal glial cells, whose endfeet directly contact vessels, are ideally situated to mediate purinergic constriction. It is probable that ATP is released directly from glial cell endfeet on to vascular smooth muscle cells. Retinal neurons, which lie farther from vessels, are less likely to mediate vasoconstriction.

For the same reason, glial-mediated generation of vascular tone would break down under pathological conditions if glial endfeet were separated from blood vessels. If the distance between glial cells and vessels were increased substantially, released ATP would be converted to adenosine before reaching the vessel wall, resulting in dilatation rather than constriction. A separation of glial endfeet from blood vessels occurs in many pathologies, including ischaemia (Zhang et al. 2011) and an animal model of cerebral amyloid angiopathy (Merlini et al. 2005). This observation further supports a glial-mediated mechanism of the generation of vascular tone in the brain.

In conclusion, our results demonstrate that ATP, acting at least in part on P2X1 receptors, is responsible for generating tone in retinal arterioles. Experiments with the gliotoxin fluorocitrate provide evidence that glial cells control arteriole tone by releasing vasoconstricting ATP.

References

Additional information

Competing interests

The authors declare no conflict of interest.

Author contributions

J.K. and E.A.N contributed equally to the design of the experiments, interpretation of the data, and writing of the article. J.K. performed and analysed the experiments. Both authors approved the final version of the manuscript.

Funding

This work was supported by Fondation Leducq and NIH grant EY004077.

Acknowledgements

The authors thank Michael Burian for his excellent technical assistance and Edith Hamel for comments on an early version of the manuscript.