Dual metabotropic glutamate receptor signaling enables coordination of astrocyte and neuron activity in developing sensory domains

Graphical abstract

Highlights

- Astrocytes and neurons exhibit coordinated activity in developing sensory domains

- Only robust neuronal events lead to activation of nearby astrocytes

- Large-scale coordinated astrocyte-neuron activity is limited to early development

- Astrocyte calcium events are induced by synergistic activation of mGluR5 and mGluR3

Authors

Vered Kellner, Calvin J. Kersbergen, Sally Li, Travis A. Babola, Gesine Saher, Dwight E. Bergles

Correspondence
dbergles@jhmi.edu

In brief

Kellner et al. show that neuronal burst firing in developing central auditory centers triggers calcium increases in nearby astrocytes. This coordinated activity requires synergistic activation of mGluR5 and mGluR3 in astrocytes and disappears after hearing onset, suggesting that it may help promote maturation of sound processing circuits in the brain.
Dual metabotropic glutamate receptor signaling enables coordination of astrocyte and neuron activity in developing sensory domains

Vered Kellner, Calvin J. Kersbergen, Sally Li, Travis A. Babola, Gesine Saher, and Dwight E. Bergles

1The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
2Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen 37075, Germany
3Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, USA
4Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
5Lead contact
*Correspondence: dbergles@jhmi.edu
https://doi.org/10.1016/j.neuron.2021.06.010

SUMMARY

Astrocytes play an essential role in the development of neural circuits by positioning transporters and receptors near synapses and secreting factors that promote synaptic maturation. However, the mechanisms that coordinate astrocyte and neural maturation remain poorly understood. Using in vivo imaging in unanesthetized neonatal mice, we show that bursts of neuronal activity passing through nascent sound processing networks reliably induce calcium transients in astrocytes. Astrocyte transients were dependent on intense neuronal activity and constrained to regions near active synapses, ensuring close spatial and temporal coordination of neuron and astrocyte activity. Astrocyte responses were restricted to the pre-hearing period and induced by synergistic activation of two metabotropic glutamate receptors, mGluR5 and mGluR3, which promoted IP3R2-dependent calcium release from intracellular stores. The widespread expression of these receptors by astrocytes during development and the prominence of neuronal burst firing in emerging neural networks may help coordinate the maturation of excitatory synapses.

INTRODUCTION

Prior to the onset of sensory experience, correlated groups of neurons in peripheral sensory organs that are assigned to discrete sensory domains fire periodic bursts of action potentials that propagate through sensory processing centers in the CNS (Blankenship and Feller, 2010). Spontaneous correlated firing among neurons mapped to similar sensory space provides a means to induce refinement of synapses through Hebbian mechanisms. This intrinsically generated activity is conserved among species, extremely resilient to perturbations, and required for precise maturation of neuronal circuitry (Clause et al., 2014; Xu et al., 2011). However, the mechanisms by which this early patterned activity initiates these diverse cellular and synaptic changes remain poorly understood.

Although neurons have been the primary focus of studies of developmental activity (McLaughlin et al., 2003; Tritsch et al., 2010), astrocytes are also critical elements of excitatory synapses. Immature astrocytes appear within the parenchyma shortly after neurons (Bayer and Altman, 1991) and extend thin lamellar sheets from their highly ramified processes (Bushong et al., 2004; Freeman, 2010) that place glutamate transporters near sites of release and provide a barrier to diffusion, limiting synaptic crosstalk (Bergles and Jahr, 1997). The elaboration of astrocyte processes is initiated at a time when nascent synapses are established and refined (Jillian, 2001), suggesting that their development is closely coordinated, ensuring the specificity of information transfer and preventing runaway excitation. Astrocytes have also been shown to secrete factors that promote the formation, maturation, and refinement of excitatory synapses (Clarke and Barres, 2013), but little is known about the activity patterns of astrocytes in the developing CNS in vivo or the temporal and spatial relationship between neuronal and astrocyte activity during this critical phase of synaptic refinement.

Neurons in the developing auditory system exhibit high-frequency bursts of action potentials prior to the onset of hearing (Lippe, 1994; Tritsch et al., 2007), ensuring robust postsynaptic activation to allow signal propagation from the cochlea to the auditory cortex (AC). Burst firing is ideally suited to produce large glutamate transients that promote engagement of receptors outside the synaptic cleft (Scanziani et al., 1997), a phenomenon that is likely to be enhanced in the developing CNS due to the limited ramification of astrocyte processes (Bushong et al., 2004) and lower expression of glutamate transporters (Sutherland et al., 1996). During this early developmental phase, astrocytes express metabotropic glutamate receptors (Sun et al., 2021).
that are optimized for detecting focal glutamate transients, but the context in which these receptors are engaged in developing circuits are unknown.

Here, we examined astrocyte activity patterns in nascent circuits within the mouse auditory system prior to the onset of hearing. We found that groups of neighboring astrocytes within future isofrequency zones in the developing inferior colliculus (IC) exhibited periodic, highly correlated calcium transients that were aligned both temporally and spatially with bands of neuronal activity. Astrocyte calcium increases were induced by coincident activation of the metabotropic glutamate receptors mGluR5 and mGluR3 following neuronal burst firing and exhibited a higher-threshold, narrower spatial extent and more prolonged time course than neuronal events. This coordinated activation of neurons and astrocytes in future isofrequency zones disappeared after hearing onset. These results indicate that intrinsically generated neuronal burst firing during development activates astrocytes within discrete sensory domains, providing a means to coordinate the spatial and temporal maturation of neurons and astrocytes at excitatory synapses.

RESULTS

Correlated neuronal and astrocyte activity in the developing CNS

To define astrocyte activity patterns in the developing CNS, we performed time-lapse fluorescence imaging in mice that expressed the genetically encoded calcium indicator GCaMP3 under control of the promoter/enhancer for GLAST (GLAST-CreER;ROSA26-lsl-GCaMP3; hereafter termed GLAST;GC3 mice) (Figures S1A and S1B). Cranial windows were implanted over the midbrain of young postnatal mice (P7–P11) to visualize the superior colliculus (SC) and IC, where neurons exhibit prominent burst firing at this age (Ackman et al., 2012; Babola et al., 2018; Tritsch et al., 2010) due to spontaneous activity generated in the retina and cochlea, respectively. Imaging was performed using a widefield fluorescence microscope in awake (unanesthetized) pups, enabling macroscopic patterns of activity to be monitored simultaneously across brain hemispheres (Figure 1A).

Time-lapse imaging revealed that groups of astrocytes in these regions exhibited transient, spatially restricted increases in intracellular calcium that were distinct between auditory (IC) and visual (SC) regions (Figure 1B); astrocyte activity in SC propagated as broad continuous waves, whereas activity in IC was organized into discrete bands (Video S1). Here, we focused primarily on the IC to expand our knowledge of cellular activity patterns in the auditory pathway prior to hearing onset.

In comparison to the spontaneous bursts of neuronal activity observed in postnatal day 7 (P7) Snap25-T2A-GCaMP6s mice (Babola et al., 2018), astrocyte calcium transients were smaller, less frequent, and longer in duration (Figures 1C and 1D); however, like neuronal activity, astrocyte responses in IC were often mirrored across the brain, with discrete events occurring simultaneously in both left and right IC. Comparable activity patterns were observed when astrocytes expressed GCaMP6s (Aldh1li1-CreER;R26-lsl-GCaMP6s) (Figures 1C and S1C–S1G), indicating that these distinct features of astrocyte activity were not due to expression of different calcium indicators. Similar to neurons (Babola et al., 2018), astrocyte calcium transients were dependent on cochlear input, as ablation of the left cochlea completely abolished spontaneous astrocyte events in the right IC, visible in the map of summed activity, the loss of dominant events, and the dramatic decrease in frequency of events in the right IC (Figures S2A and S2B). Astrocyte activity bands were sometimes restricted to the central region (Figure 1E, event 1) and at other times formed doublets at the margins (Figure 1E, event 2) but were consistently aligned perpendicular to the tonotopic axis, oriented diagonally when viewed from the dorsal surface (see Figure 1B). In Snap25-T2A-GCaMP6s mice, just after hearing onset (P14–P16), exposure to low- (3 kHz) and higher-frequency (15 kHz) tones elicited similar bands of activity in IC neurons (Figure 1E) (Babola et al., 2018), indicating that astrocytes within this developing auditory center exhibit periodic, highly correlated activity aligned to future isofrequency domains.

To visualize astrocyte and neuron activity patterns at high resolution simultaneously, we performed two-photon imaging in mice that expressed GCaMP3 in astrocytes and jRGECO1a, a red-shifted calcium indicator, in neurons (GLAST;GC3;Thy1-jRGECO1a mice). Using a custom grid-based analysis that automatically detects active regions (see STAR Methods) (Video S2), spontaneous activity was assessed in continuous 5 min segments from P7–P8 mice. This analysis revealed that astrocyte events were spatially and temporally correlated with neuronal events in the same region (Figure 1F and 1G), with 91% ± 3% of active astrocyte grids overlapping with active neuronal grids (n = 80 events, five mice, p < 0.01 versus random overlap); however, the peak of astrocyte calcium transients was delayed 1.7 ± 0.3 s (Figure 1H), more spatially restricted (Figure 1I, left), and longer in duration than neuronal events (Figure 1I, right).

Although astrocyte events invariably followed bands of neuronal activity in the same area, most neuronal events (92%) were not associated with detectable increases in astrocyte calcium. Neuronal events that preceded astrocyte events were larger in area and longer in duration and had higher amplitudes than neuronal events not associated with astrocyte activity (Figure 1J, N(+A) compared to N), suggesting that astrocytes have a higher threshold for activation. Together, these results indicate that large amplitude spontaneous neuronal events are spatially and temporally correlated with astrocyte activity in this central auditory center prior to hearing onset.

Astrocyte calcium activity in AC

Spontaneous bursts of neuronal activity that originate in the developing cochlea prior to hearing onset propagate through nascent auditory pathways to reach AC (Babola et al., 2018). To determine if neuronal burst firing is also capable of inducing astrocyte activity in isofrequency domains of AC at this age, we used macroscopic widefield imaging in P6–P8 GLAST;GC3 mice to simultaneously monitor astrocyte calcium levels in IC and AC (see STAR Methods) (Figure 2A): AC was identified by local vascular morphology and subsequent correlation of activity patterns between IC and AC (Figure 2A). Time-lapse imaging revealed that astrocytes in AC also exhibited periodic increases in calcium. These events were slightly smaller in amplitude than responses in IC (Figures 2B and 2C), and while the events in IC and AC were highly correlated (Pearson’s r = 0.81 ± 0.02, n = 8 mice),...
Tamoxifen 2x 50 μg
Acute imaging in awake pups

Astrocytes (P9 GLAST;GC3 mouse)
Neurons (P8 Snap25-GC6s mouse)

Astrocytes (P7 Aldh1l1;GC6s mouse)

Hearing onset

Frequency (events/min)

Event duration (FWHM, s)

Neurons (Snap25-GC6s) - P7 mouse; Widefield imaging
Event 1
Event 2
Time series merge

Neurons (Snap25-GC6s) - P14 mouse; Widefield imaging
3 kHz (left ear)
15 kHz (left ear)
Frequency merge

Dual color imaging (P8 GLAST;GC3;Thy1-jRGECO1a mouse)

Example event
Active Grids

Average events

Average Delay = 1.7 s

Active Grids/Event

Duration (s)

Active Grids/Event

Duration (s)

Amplitude (%max)

Neurons (Thy1-jRGECO1a)

Astrocytes (GLAST;GC3)

(legend on next page)
the temporal delay between events in IC and AC was less apparent compared to neuronal events (Babola et al., 2018), presumably because of the slower rise time and prolonged duration of astrocyte calcium increases. Using the tonotopic organization of IC as a guide, individual IC events were used as a seed to map corresponding active areas in AC (Figure 2D). Astrocytes within AC also exhibited spatially restricted activation that segregated according to the known tonotopic organization of this region (Figures 2D and 2E). Together, these results indicate that astrocytes in developing auditory midbrain and cortex exhibit periodic correlated activity within isofrequency lamina in concert with bursts of neuronal activity.

Astrocyte coordinated events diminish after hearing onset

Spontaneous neuronal burst firing first emerges in the auditory system during the late prenatal period, increases in frequency during the first two postnatal weeks, and then ceases just after hearing onset (Babola et al., 2021; Tritic et al., 2010). To determine the developmental profile of astrocyte coordinated calcium activity, we used widefield imaging of AC in P4, P7, P11, and P14–P15 GLAST/GC3 mice. Astrocyte activity closely followed developmental changes in neuronal burst firing. Very few calcium events were detected at P4; at P7 and P11, astrocyte calcium events were robust, and these events declined again just after hearing onset (P14–P15) (Figure 2F). To explore the link between neuronal and astrocyte activity in hearing mice, we monitored sound-evoked calcium responses in AC of dual-indicator mice (Aldh1l1;GC6s;Thy1-jRGECO1a) (Figure 2G). Although neurons in these mice responded robustly to a range of frequencies and sound pressure levels in a characteristic tonotopic pattern (Figure 2G, left panel; and Figure 2H), astrocytes in AC did not respond to even loud tonal stimuli (100 dB sound pressure level [SPL]) (Figure 2G, middle panel; and Figure 2H), although they exhibited broad activation when the animals moved (Figure 2G, right panel). These findings are consistent with the observation that astrocytes in the adult visual cortex (V1) do not exhibit calcium increases in response to visual input but are activated in response to norepinephrine release during heightened states of arousal (Paukert et al., 2014). Thus, large-scale coordinated activity in neurons and astrocytes is restricted to a narrow developmental time period prior to the onset of sensory experience.

Astrocyte calcium events are mediated by mGluR5

Astrocytes in the developing cortex express mGluR5 metabotropic glutamate receptors, group I Gαq-coupled receptors that generate IP3 and release calcium from intracellular stores (Sun et al., 2013; Zhang et al., 2014). To determine if astrocyte calcium transients in IC were dependent on IP3R2, we imaged astrocyte calcium transients in mice lacking tpr2 (GLAST;GC3;IP3R2−/− mice), which have been shown to exhibit profoundly reduced neurotransmitter evoked calcium transients in astrocytes (Petraicz et al., 2008). Correlated astrocyte calcium transients were completely absent in these mice (Figure S3), indicating that global astrocyte activity at this age depends on metabotropic receptor induced release of calcium from intracellular stores. To determine if astrocytes in the developing IC also express mGluR5, we performed time-lapse confocal imaging in acute slices of midbrain from P7–P9 GLAST/GC3 mice and applied the group I mGluR agonist DHPG (10 μM) in the presence of antagonists to block action potential firing (see STAR Methods). This manipulation reliably elicited a rise in calcium within IC astrocytes (Figures S4A and S4B) that was abolished by the mGluR5 antagonist MPEP (10 μM; Figure S4C). To determine if correlated astrocyte events in vivo require activation of mGluR5 receptors, we performed widefield imaging of astrocytes in IC before and after intraperitoneal injection of MPEP (10 mg/kg). MPEP administration blocked tonotopically organized astrocyte calcium signals in IC almost immediately, while injection of vehicle alone did not alter astrocyte activity (Figures 2A and 3B; Video S3). In contrast, MPEP had no significant effect on either the frequency (Figures 3C and 3D) or amplitude of neuronal events in Snap25-GC6s mice (amplitude difference, %ΔF/F: vehicle, 0.42 ± 0.2; p = 0.47; MPEP, 0.4 ± 0.2; p = 0.42, paired t test, n = 4 and 5 mice, vehicle and MPEP, respectively), indicating that the decrease in astrocyte activity was not due to suppression of neuronal burst activity.
firing. To address the specific role of astrocyte mGluR5 receptors, we generated an astrocyte specific knockout of mGluR5 by crossing mGluR5^{fl/fl} mice (Xu et al., 2009) to Aldh1l1-CreER;GC3^{−/−} mice (mGluR5 conditional knockout [cKO]) and inducing recombination by injecting 4-hydroxytamoxifen at P1–P2 (see STAR Methods). Astrocytes in acute IC slices from mGluR5 cKO mice no longer responded to DHPG with a calcium rise, although norepinephrine (10 μM) still elicited a robust increase in calcium (Figures S4D and S4E), indicating that calcium release mechanisms remained intact. Widefield imaging in P7 mGluR5 cKO mice pups revealed that spontaneous astrocyte calcium transients in IC were abolished in these mice, indicating that astrocyte mGluR5 receptors are necessary to induce these coordinated, spatially restricted events (Figures 3E and 3F).

Thus, neuronal burst firing in the developing auditory pathway engages mGluR5 receptors in nearby astrocytes, eliciting correlated calcium transients within specific isofrequency lamina.

Astrocyte calcium events also require mGluR3 receptors

Astrocytes in the developing brain also express mGluR3 (Sun et al., 2013; Zhang et al., 2014), a G_i-coupled group II mGluR...
previously linked to calcium rises in astrocytes (Moldrich et al., 2002; Winder and Conn, 1993), suggesting that it could also be activated through neuronal burst firing. In acute IC slices from P7–P11 GLAST;GC3 and Aldh111;GC6s mice, the group II agonist LY354740 (1 μM; in tetrodotoxin citrate [TTX], 1 μM) elicited a comparable rise in calcium in astrocytes in the central nucleus and external cortex of IC (number of responsive grids: p = 0.65; the integral of response: p = 0.86, Student’s t test, n = 4 slices/area, four mice) (Figures S4F) that was inhibited by the mGluR2/3 antagonist LY341495 (100 μM), although these...
Figure 4. mGluR3 receptors contribute to in vivo astrocyte calcium events
(A) Left: maximum intensity image of all frames before (baseline; top) and 1 h after (bottom) systemic administration of LY341495 (an mGluR2/3 antagonist) in a P10 GLAST;GC3 mouse. Right: raster plot denoting detected peaks.
(B) Average frequency of events in astrocytes before and after either vehicle (saline; left) or LY341495 injection (antagonist; right). Colored circles are mean ± SEM, and gray circles are for each mouse. Paired t test (n.s., not significant; **p < 0.01; n = 5 P7–P9 mice and n = 5 P7–P10 mice for vehicle and LY, respectively).
(C) Left: sum of all frames before (baseline; top) and 1 h after systemic administration of LY341495 in a P8 Snap25-GC6s mouse. Right: raster plot denoting detected peaks.
(D) Average frequency of events in neurons before and after either vehicle (left) or LY341495 injection (antagonist; right). Paired t test (n.s., not significant; n = 5 P6–P8 mice and n = 7 P7–P8 mice for vehicle and LY, respectively).

(legend continued on next page)
responses in IC by 16% ± 0.8% (n = 7 mice; p < 0.001) but LY341495 unexpectedly decreased the amplitude of neuronal Snap25-GC6s
mate release (Mateo and Porter, 2007; Xi et al., 2002). In vivo macroscopic imaging in Snap25-GC6s mice revealed that LY341495 unexpectedly decreased the amplitude of neuronal responses in IC by 16% ± 0.8% (n = 7 mice; p < 0.001) but had no effect on event frequency (p = 0.9) (Figures 4C and 4D).

To study the role of astrocytic mGluR3 without possible complications of manipulating neuronal receptors, we generated Aldh1l1-CreER;mGluR3+/+;GC6s (mGluR3 cKO) mice to selectively remove mGluR3 from astrocytes. Widefield imaging in awake P7–P9 mGluR3 cKO mice revealed that both the amplitude and frequency of spontaneous calcium transients were reduced relative to controls (Figures 4E–4H; 48.5% ± 3% decrease in frequency; p < 0.05; 21% ± 6% decrease in amplitude; p < 0.05; n = 7 mice). The residual activity was not dependent on mGluR3, as systemic administration of LY341495 did not further reduce event frequency (Figure 4H, left; compare to Figure 4B) or amplitude (paired t test; p = 0.3, n = 4 mice) but was dependent on mGluR5, as this residual activity was abolished by MPEP (Figure 4H, right). Together, these results indicate that synergistic activation of two distinct metabotropic glutamate receptors, mGluR5 and mGluR3, contribute to calcium rises within astrocytes in response to neuronal burst firing in the auditory system prior to hearing onset.

DISCUSSION

Synergistic activation of metabotropic glutamate receptors in astrocytes

mGluRs were first shown to induce intracellular calcium changes in astrocytes in dissociated cultures from the developing brain (Cornell-Bell et al., 1990a; Nedergaard, 1994; Porter and McCarthy, 1995), extending initial reports that astrocytes express glutamate gated ion channels (Barres et al., 1990) and providing key evidence that glial cells could be directly influenced by neurotransmitters. Nevertheless, although long suspected to be a primary means of neuron-astrocyte communication in brain circuits, in vivo evidence of physiological activation of mGluRs in astrocytes has remained elusive. In the adult CNS, astrocytes in the cerebral cortex exhibit global increases in cytosolic calcium when norepinephrine is released during periods of heightened arousal (Ding et al., 2013; Paukert et al., 2014), as well as spontaneous, microdomain calcium transients within their processes (Grosche et al., 1999; Srinivasan et al., 2015) that arise, in part, from mitochondrial calcium release (Agarwal et al., 2017). Subsequent studies revealed that mGluR5, the primary G3-coupled mGluR responsible for glutamate-induced calcium transients in astrocytes (Cai et al., 2000; Wang et al., 2006), is downregulated by these cells with increasing postnatal age (Cai et al., 2000; Sun et al., 2013), providing an explanation for the inability to observe astrocyte calcium changes in response to local synaptic activity in the adult mouse CNS. Our studies reveal that astrocytes in the developing midbrain and cortex express functional mGluR5 receptors that enable detection of spontaneous bursts of neuronal activity that course through emerging sensory pathways.

Although mGluR5 has been a primary focus of glutamate-induced calcium signaling in astrocytes, mGluR3 is also expressed by these cells from early development into adulthood (Sun et al., 2013). This group II mGluR is linked to Q-mediated activation of adenylate cyclase and reductions in cyclic AMP (cAMP) in most cells (Tanabe et al., 1993); however, traditionally, Q-coupled receptors, including mGluR3 and heterologous inhibitory DREADD receptors, also induce calcium increases in astrocytes by promoting release from intracellular stores (Durkee et al., 2019; Winder and Conn, 1993). Nevertheless, physiological activation of mGluR3 in astrocytes has not been established in vivo. We find that conditional deletion of mGluR3 from astrocytes and in vivo pharmacological inhibition of mGluR3 reduced neuron-induced calcium transients in astrocytes in the developing brain, indicating that concurrent activation of mGluR3 and mGluR5 predominates in astrocytes at this age. These receptors act synergistically, as suppression of mGluR5 signaling alone abolished abolished neuron-induced calcium increases in astrocytes, consistent with recent studies showing that mGluR3 potentiates mGluR5-induced calcium transients in developing pyramidal neurons and enhances polyphosphoinositide (PI) hydrolysis by mGluR5 in cortical slices from early postnatal mice (Di Menna et al., 2018). Interactions between these two receptors may occur early in the signal transduction pathway through Q activation of phospholipase C by βγ subunits liberated from mGluR3 (Wang et al., 1999). The persistent expression of mGluR3 into maturity by astrocytes raises the possibility that it may continue to act in a synergistic role with other Q-coupled receptors to enhance normally subthreshold responses. In primary visual cortex of adult mice, light-induced activation of neurons only reliably triggers local astrocyte activity during periods of heightened arousal, when norepinephrine

(E) Left: maximum intensity image of all frames from P8 control (top; Aldh1l1-CreER;mGluR3+/+;GC6s) and P7 mGluR3-cKO (bottom; Aldh1l1-CreER;mGluR3fl/fl;GC6s) mice. Right: raster plot denoting detected peaks.

(F) Cumulative distribution of amplitudes over all events in control and mGluR3-cKO mice. Kolmogorov-Smirnov test (**p < 0.001; n = 7 P7–P8 and n = 6 P7–P9 mice for control and mGluR3-cKO, respectively).

(G) Graph showing average frequency of events in control and mGluR3-cKO mice. Student’s t test (*p < 0.05, n = 7 and 6 mice for control and mGluR3-cKO, respectively).

(H) Graph showing lack of effect of systemic administration of LY341495 in mGluR3-cKO mice (left; paired t test; n.s., not significant; n = 4), and decrease in frequency of events following administration of an mGluR5 antagonist (MPEP; right; paired t test; *p < 0.05; n = 4 mice).
is released (Paukert et al., 2014; Slezak et al., 2019). Synergistic interactions between mGluR3 and G\textsubscript{q}-coupled alpha adrenergic receptors similar to that described here could enhance mGluR3 signaling in mature astrocytes to enable detection of local circuit activity.

Possible consequences of astrocyte calcium signaling in the developing brain

Astrocytes undergo a dramatic morphological transformation in the postnatal mouse brain (Bushong et al., 2004), a process facilitated by neurexin-ligand signaling with neurons (Stogsdill et al., 2017), in which they elaborate fine processes that place transporters and ion channels near sites of release for efficient neurotransmitter and potassium clearance, and enable neuromodulation through release of gliotransmitters (Araque et al., 2014). Studies of developing astrocytes in vitro indicate that focal glutamate application can induce filopodial outgrowth from astrocyte processes (Cornell-Bell et al., 1990b; Lavialle et al., 2011) and VGluT1-KO mice exhibit reduced astrocyte morphological complexity in vivo (Morel et al., 2014), raising the possibility that mGluRs link intracellular calcium changes to morphogenesis and stabilization of tri-synaptic structures. Astrocytes have also been shown to secrete factors that promote the development (e.g., thrombospondins; Christopherson et al., 2005; Eroglu et al., 2009), maturation (e.g., glipicans and chordin-like 1; Allen et al., 2012; Blanco-Suarez et al., 2018) and refinement of synapses (MertK and Megf10; Chung et al., 2011) and VGluT1-KO mice exhibit reduced astrocyte morphological complexity in vivo in a variety of cells and has been linked to a decrease in GABA transporter expression in striatal astrocytes (Yu et al., 2018), the downstream consequences of these periodic calcium transients remain to be defined.

Astrocytes co-cultured with neurons increase their expression of GLT-1 (EAAT2), a glutamate transporter responsible for the majority of glutamate uptake in the adult CNS (Swanson et al., 1997), in an mGluR5-dependent manner (Yang et al., 2009) and cKO of mGluR5 from astrocytes reduced ensheathment of excitatory synapses and GLT-1 expression (Morel et al., 2014), pointing to an important role for developmental mGluR5 signaling in promoting the structural and functional maturation of astrocytes. The activity patterns described here may help coordinate neuronal and astrocyte maturation within discrete, functionally important networks dedicated to processing information from similar aspects of sensory space. The high threshold for astrocyte activation, in which only a subset of the largest neuronal burst events trigger calcium rises in astrocytes, may limit spurious activation of highly amplifying metabotropic receptors and increase the probability of interactions through engagement of multicellular astrocyte and neuronal networks. Although these studies were focused on the auditory system, burst firing is a characteristic feature of diverse neural networks during development (Kirby et al., 2013). Our observation of coordinated activation of astrocytes in SC, mirroring the pattern of neuronal activity induced by retinal waves (Ackman et al., 2012), suggests that coincident astrocyte-neuron activity may have a conserved role during early development of the CNS.

STAR* METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead contact
 - Materials availability
 - Data and code availability
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Transgenic animal models
- **METHOD DETAILS**
 - Tamoxifen Injections
 - Installation of cranial windows
 - Cochlear ablation
 - In vivo calcium imaging
 - Sound stimuli
 - Drug delivery
 - Image processing
 - Simultaneous IC and auditory cortex (AC) imaging analysis
 - AC imaging analysis
 - Sound evoked imaging analysis
 - Acute brain slice preparation
 - Pharmacological manipulations
 - Time-lapse fluorescence imaging in acute brain slices
 - Image processing for acute brain slice
 - Immunohistochemistry
- **QUANTIFICATION AND STATISTICAL ANALYSIS**

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.neuron.2021.06.010.

ACKNOWLEDGMENTS

We thank Dr. M. Pucak and N. Ye for technical assistance, T. Shelly for machining expertise, and members of the Bergles laboratory for discussions and comments on the manuscript. We thank Dr. A. Agarwal for providing expertise in slice imaging, V.K., T.A.B., and C.J.K. were supported by NRSA grants from the NIH (F32DC017364, F31DC016497, and F30DC018711, respectively). Funding was provided by grants from the NIH (DC008060, NS050274, DC000023, and EY017203) and a grant from the Rubenstein Fund for Hearing Research to D.E.B.

AUTHOR CONTRIBUTIONS

DECLARATION OF INTERESTS

D.E.B. is a member of the scientific advisory board of Decibel Therapeutics.

Received: December 1, 2020
Revised: May 3, 2021
Accepted: June 9, 2021
Published: July 9, 2021
REFERENCES

Moldrich, R.X., Apricó, K., Diwakaria, S., O’Shea, R.D., and Beart, P.M. (2002). Astrocyte mGlu(2/3)-mediated cAMP potentiation is calcium sensitive: studies in murine neuronal and astrocyte cultures. Neuropharmacology

STAR★METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Donkey Serum</td>
<td>Jackson ImmunoResearch Laboratories</td>
<td>Cat# 017-000-121; RRID: AB_2337258</td>
</tr>
<tr>
<td>Mouse polyclonal anti-NeuN</td>
<td>Millipore</td>
<td>Cat# MAB377; RRID: AB_2298772</td>
</tr>
<tr>
<td>Chicken polyclonal anti-GFP</td>
<td>Aves Labs</td>
<td>Cat# GFP-1020; RRID: AB_10000240</td>
</tr>
<tr>
<td>Mouse Monoclonal Anti-S-100 (β-Subunit) antibody</td>
<td>Sigma-Aldrich</td>
<td>Cat# S2532; RRID: AB_477499</td>
</tr>
<tr>
<td>Alexa Fluor 488-conjugated AffiniPure F(ab')2 Fragment Donkey anti-chicken IgY (IgG)(H+L)</td>
<td>Jackson ImmunoResearch Laboratories</td>
<td>Cat# 703-546-155; RRID: AB_2340376</td>
</tr>
<tr>
<td>Donkey anti-mouse IgG (H+L), Alexa Fluor 546</td>
<td>ThermoFisher Scientific</td>
<td>Cat# A10036; RRID: AB_2534012</td>
</tr>
<tr>
<td>Chemicals, peptides, and recombinant proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S)-3,5-Dihydroxyphenylglycine, DHPG</td>
<td>Tocris</td>
<td>Cat# 0805; CAS: 162870-29-3</td>
</tr>
<tr>
<td>NBQX disodium salt</td>
<td>Tocris</td>
<td>Cat# 1044; CAS: 479347-86-9</td>
</tr>
<tr>
<td>Tetrodotoxin citrate</td>
<td>Alomone labs</td>
<td>Cat# T-550; CAS: 18660-81-6</td>
</tr>
<tr>
<td>(RS)-(2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid; (RS)-CPP</td>
<td>Tocris</td>
<td>Cat# 0173; CAS: 100828-16-8</td>
</tr>
<tr>
<td>2-Methyl-6-(phenylethynyl)pyridine hydrochloride; MPEP hydrochloride</td>
<td>Tocris</td>
<td>Cat# 1212; CAS: 219911-35-0</td>
</tr>
<tr>
<td>LY-354740</td>
<td>Tocris</td>
<td>Cat# 3246; CAS: 176199-48-7</td>
</tr>
<tr>
<td>LY-341495</td>
<td>Tocris</td>
<td>Cat# 1209; CAS: 201943-63-7</td>
</tr>
<tr>
<td>L-(–)-Norepinephrine (+)-bitartrate salt monohydrate</td>
<td>Sigma-Aldrich</td>
<td>Cat# A9512; CAS: 108341-18-0</td>
</tr>
<tr>
<td>Tamoxifen</td>
<td>Sigma-Aldrich</td>
<td>Cat# T5648; CAS: 10540-29-1</td>
</tr>
<tr>
<td>(2)-4-Hydroxytamoxifen;</td>
<td>Sigma-Aldrich</td>
<td>Cat# H7904;; CAS: 68047-06-3</td>
</tr>
<tr>
<td>Experimental models: organisms/strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6.Cg-Snap25tm3.1Hze/J; Snap25-T2A-GCaMP6s</td>
<td>Jackson Laboratory</td>
<td>Stock# 025111</td>
</tr>
<tr>
<td>Tg(Slc1a3-cre/ERT)1Nat/J</td>
<td>Dr. Jeremy Nathans; Wang et al., 2012</td>
<td>IMSR_JAX:012586</td>
</tr>
<tr>
<td>B6;129-Gt(Rosa)26Sor(CAG-cGCaMP3)</td>
<td>Bergles lab; Paukert et al., 2014</td>
<td>N/A</td>
</tr>
<tr>
<td>Aldh1111-CreERT2</td>
<td>Dr. Gesine Saher; Winchenbach et al., 2016</td>
<td>N/A</td>
</tr>
<tr>
<td>B6;129-Gt(Rosa)26Sor(CAG-cGCaMP6s)</td>
<td>Bergles lab; Kim et al., 2016</td>
<td>N/A</td>
</tr>
<tr>
<td>B6;129-Grm5tm1.1jun/J</td>
<td>Dr. Paul Worley; Xu et al., 2009</td>
<td>IMSR Cat# JAX:028626</td>
</tr>
<tr>
<td>Grm3tm1a(KOMP)Wtsi</td>
<td>KOMP; UC Davis</td>
<td>IMSR Cat# KOMP: CSD66285-1a-Wtsi</td>
</tr>
<tr>
<td>Itrp2tm1(Cwr)/Itrp2+</td>
<td>Dr. Ju Chen; Li et al., 2005</td>
<td>MGI Cat# 3713675</td>
</tr>
<tr>
<td>B6.129S4-Gt(Rosa)126SorPm1(FLPf)/Dmy/J</td>
<td>Jackson Laboratory</td>
<td>Stock# 009086</td>
</tr>
<tr>
<td>Tg(Thy1-jRGECO1a)GP8.62Dkjm/J</td>
<td>Jackson Laboratory</td>
<td>Stock# 030528</td>
</tr>
<tr>
<td>Oligonucleotides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer: cccagttgagattggaaagtg (Snap25GC6s-com-s)</td>
<td>Jackson Laboratory</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(Continued on next page)
Continued

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer: acttgcagcttcaaga (Snap25GC6s-mut-as)</td>
<td>Jackson Laboratory</td>
<td>N/A</td>
</tr>
<tr>
<td>Primer: ctggttttgagtcagc (Snap25GC6s-wt-as)</td>
<td>Jackson Laboratory</td>
<td>N/A</td>
</tr>
<tr>
<td>Primer: tcaatggtggctgctg (CMV-E-as)</td>
<td>Paukert et al., 2014</td>
<td>N/A</td>
</tr>
<tr>
<td>Primer: cttctgcctctgctgcttct (ROSA26 s)</td>
<td>Paukert et al., 2014</td>
<td>N/A</td>
</tr>
<tr>
<td>Primer: cgaggcggagaccaag (ROSA26-as)</td>
<td>Paukert et al., 2014</td>
<td>N/A</td>
</tr>
<tr>
<td>Primer: ggtctcctactctgtatg (Gmr5-1F1)</td>
<td>Xu et al., 2009</td>
<td>N/A</td>
</tr>
<tr>
<td>Primer: agtccggtgtcctttcctc (Gmr5-1R1)</td>
<td>Xu et al., 2009</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Software and algorithms

<table>
<thead>
<tr>
<th>Software and algorithms</th>
<th>Source</th>
<th>RRID</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiji</td>
<td>Schindelin et al., 2012</td>
<td>SCR_003070</td>
<td>https://fiji.sc/</td>
</tr>
<tr>
<td>MultiStackReg</td>
<td>Brad Busse</td>
<td>SCR_002285</td>
<td>http://bradbusse.net/sciencedownloads.html</td>
</tr>
<tr>
<td>Dftregistration code</td>
<td>Guizar-Sicairos et al., 2008</td>
<td></td>
<td>https://www.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation?focused=6461818&tab=example</td>
</tr>
<tr>
<td>RANDBLOCK</td>
<td>Jos</td>
<td></td>
<td>https://www.mathworks.com/matlabcentral/fileexchange/17981-randblock</td>
</tr>
<tr>
<td>Custom codes used in this paper</td>
<td>Bergles lab</td>
<td></td>
<td>https://github.com/Bergles-lab/Kellner-et-al.–2021-source-code</td>
</tr>
</tbody>
</table>

RESOURCE AVAILABILITY

Lead contact
Requests for sharing resources and reagents should be directed to the Lead Contact, Dwight Bergles (dbergles@jhmi.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All imaging data reported in this paper will be shared by the lead contact upon request. All original code has been deposited on GitHub (https://github.com/Bergles-lab/Kellner-et-al.–2021-source-code) and is publicly available as of the date of publication. Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Male and female mouse pups between the ages of P4 to P11 were used in experiments prior to hearing onset and P14-15 after hearing onset. Gender was a random variable. Mice were maintained on a mixed background to improve litter survival and to mitigate potential effects of C57BL/6 mutations involved in hearing. Since we used an inducible Cre-loxP system for all experiments involving astrocytes, experimental mice were injected with tamoxifen (see Tamoxifen injections section below). Mice were housed on a 12-hour light/dark cycle and were provided food ad libitum. All experiments and procedures were approved by the Johns Hopkins Institutional Care and Use Committee.

Transgenic animal models

Generation and genotyping of the following mouse lines: GLAST-CreER (Wang et al., 2012), Aldh111-CreER (Winchenbach et al., 2016), ROSA26-Isi-GCaMP3 (Paukert et al., 2014), ROSA26-Isi-GCaMP6s (Kim et al., 2016), Snap25-T2A-GCaMP6s (Madisen et al., 2015), Thy1-JRGECO1a-WPRE (GP8.62; Dana et al., 2016), IP3R2-tdTom (Li et al., 2005), and mGluRs6fl/fl mice (Xu et al., 2009) have been previously described. Grm3fl/flKOMP mice were acquired from KOMP and crossed to ROSA26-FLPe mice to generate Grm3fl/fl mice. ROSA26-Isi-GCaMP6s in which the neo cassette was removed using ROSA26-FLPe mice were also utilized.

METHOD DETAILS

Tamoxifen Injections

The tamoxifen solution for injections (1 mg/mL) was freshly prepared by sonicating tamoxifen (T5648, Sigma-Aldrich) in sunflower seed oil (S5007, Sigma-Aldrich) at room temperature for 20-30 min (with intermittent 20 s vortexing every 10 min). This solution was stored at 4°C for 5-7 days away from light. In Aldh111-CreER;ROSA26-Isi-GCaMP6s, Aldh111-CreER;mGluR5fl/fl and Aldh111-CreER;mGluR3fl/fl mice and their controls, (Z)-4-Hydroxytamoxifen (4-OHT; H7904; Sigma-Aldrich) was used. To prepare 4-OHT, powder was dissolved in 100% EtOH to achieve a final concentration of 20 mg/ml. Stock aliquots containing 50 μl were made and stored at −80°C until needed. To achieve a final concentration of 20 mg/mL. Stock aliquots containing 50 μl were made and stored at −80°C until needed. When needed, 250 μl of sunflower seed oil was added to the aliquot, and sonicated for 20-30 min (with intermittent 20 s vortexing every 10 min). The solution was then spun using a speed vacuum to ensure evaporation of the EtOH and used within 24hrs. Mice were injected intraperitoneally (i.p.) with 50 μl of tamoxifen (50 ng per animal) or 4-OHT (200 μg per animal) between P1-P3 (unless otherwise mentioned in the text), once a day for two consecutive days, with each injection a minimum of 20 hr apart.

Installation of cranial windows

The surgery was described previously in Babola et al. (2018). Briefly, animals were anesthetized with isoflurane (3%-4% for induction, until mice were unresponsive to toe-pinch and 1%-2% during the procedure). Following a local injection of lidocaine, a midline incision was made and the scalp was removed. A head bar was secured to the head using super glue (Krazy Glue). Connective tissue and muscles were either cut or pushed away above the interparietal bone. HEPES-buffered artificial cerebrospinal fluid (HEPES-aCSF) was applied to the exposed bone and replenished throughout the surgery. The interparietal bone was removed to expose the midbrain. The dura mater was removed, exposing the colliculi and extensive vasculature. A 5mm coverslip (CS-5R; Warner Instruments) was attached using super glue, and animals were allowed to recover a minimum of 2 hours prior to imaging. After imaging was completed, all animals were euthanized and in some cases the brain was harvested.

For simultaneous imaging of inferior colliculus (IC) and auditory cortex (AC), in addition to the above procedure for IC, a cranial window over AC (~3.5 mm lateral to lambda) was made, starting from the lateral suture and moving medially (~3 to 4 mm diameter). The dura was carefully removed before a 4mm glass coverslip (CS-4R; Warner Instruments) was glued over the window. Auditory cortex windows in P14-P15 mice were installed using a microblade and microscissors to remove musculature and a ~3 mm circular region of skull overlying the right auditory cortex. Following skull removal, the dura was carefully removed using microscissors and exposed brain was continuously immersed in HEPES-aCSF. A 5 mm coverslip (CS-5R; Warner Instruments) was attached using super glue, and animals were allowed to recover a minimum of 2 hours prior to imaging.

Cochlear ablation

Prior to cranial window installation, a postauricular incision was made and the cervical musculature retracted to expose the auditory bulla. The bone enclosing the auditory bulla was removed and the middle ear exposed. Using fine forceps, middle ear mesenchyme was removed to expose the cochlear wall. Using a small-diameter aspirator, the bony cochlear wall was perforated and the cochlea removed. The open cavity was packed with Gelfoam to prevent bleeding, the overlying muscles moved back into place, and the incision sealed with Vetbond. Animals were imaged within 3 hours after the procedure. After imaging, a cochlear dissection was performed to ensure complete ablation. Animals with incomplete ablations or mice in which there was no calcium activity in the contralateral IC or in the SC (superior colliculus) were not used for analysis.
In vivo calcium imaging

After recovering from anesthesia for 1–3 hours, pups were mounted onto a metal bar to ensure head-fixation. They were maintained at 37°C by using a heating pad during the imaging (TC-1000; CWE). The pups were mostly calm during imaging sessions but occasional movements occurred. These movements were detected and removed during image processing (see below). After hearing onset (>P12), awake animals were imaged while head-fixed but on a freely-rotating tennis ball to simulate natural movement.

Widefield epifluorescence imaging was performed using a Hamamatsu ORCA-Flash4.0 LT digital CMOS camera coupled to a Zeiss Axio Zoom V16 stereo zoom microscope. For midbrain imaging, a 4x4mm field of view was illuminated continuously with a metal halide lamp (Zeiss Illuminator HXP 200C) and visualized through a 1X PlanNeoFluar Z 1.0x objective at 17x zoom. When simultaneously imaging the cortex and the midbrain, a 6x6mm field of view was obtained using a 11x zoom. Image resolution was 512x512 pixels (16-bit pixel depth) after 2x2 binning to increase sensitivity. Imaging sessions consisted of uninterrupted acquisition over 10 minutes with an acquisition frame rate of 10 Hz, unless otherwise noted.

For dual-color two-photon imaging of neurons and astrocytes with single-cell resolution, a two-photon microscope (Zeiss LSM 710) was used. Two photon excitation was achieved using a Ti:sapphire laser (Chameleon Ultra II; Coherent) tuned to 1000 nm. A 425x425 μm or 607x607 μm field of view was visualized using a 20x Zeiss 1.0 NA objective. Images were collected at a resolution of 512x512 pixels (8-bit pixel depth) at 2 Hz using a galvo-galvo scanner.

Sound stimuli

Acoustic stimuli were presented using a free-field speaker (MF1; Tucker Davis Technologies) placed 10 cm from the left ear within a custom sound attenuation chamber with external noise attenuation of 40 dB (Babola et al., 2018). Stimuli consisted of 4 repetitions of cosine-gated sinusoidal amplitude modulated pure tones (1 s, 10 Hz modulation) from 3 to 48 kHz in ¼ octave intervals played in a random order at 5 s intervals. Tones were generated within the RPvidsEx software (Tucker Davis Technologies), triggered using the microscope’s frame out signal, and delivered through the RZ6 Audio Processor (Tucker-Davis Technologies). Calibration of the free-field speaker was performed using a calibrated microphone (7017; ACO Pacific, Inc.) and preamplifier (4016; ACO Pacific, Inc.) in BioSigRZ software (Tucker-Davis Technologies). Given the relatively flat intensity profile of the speaker (peak amplitude 105 dB sound pressure level [SPL] ± 5 dB for a 2.0 V stimulus at tested frequencies from 3 – 50 kHz), stimulus levels were not corrected across presented frequencies. Stimuli for displayed images and analysis were presented with zero attenuation (105 ± 5 dB SPL) because of high auditory thresholds around ear canal opening.

Drug delivery

For in vivo drug delivery, the animals were imaged as described above and then injected intraperitonially with either MPEP (10 mg/kg; Tocris; dissolved in ddH2O), an mGluR5 antagonist, LY341495 (3 mg/kg; Tocris; dissolved in 1.2eq NaOH and diluted in 0.9% NaCl), an mGluR2/3 antagonist, or vehicle (ddH2O or 0.9% NaCl). The animals were imaged immediately after injection (in the case of MPEP and ddH2O) or within 30-60 min after injection (in the case of LY341495 and 0.9% NaCl).

Image processing

Widefield videos were visually inspected for clarity of the window and for superior colliculus (SC) activity. If the window was obstructed by blood or there was no SC activity, the movie would not be processed further. In some cases, either the right or left IC was clear and the movie was processed only for that side. Animals that had undergone cochlear ablation and KO animals often did not have SC activity but were still used for data analysis. Widefield raw images were imported into MATLAB (MATHWORKS) and corrected for photobleaching by subtracting a fitted exponent from the signal. Images were cropped to include only the inferior colliculus (IC) and a square area in the middle of the IC was used to detect auto fluorescent signals. Movement was detected using efficient subpixel image registration (Guizar-Sicairos et al., 2008) and the signal was zeroed during the detected movement events (after filtration, see below). Image intensities were normalized as ΔF/Fo values, where ΔF = F - F₀ and F₀ was defined as the median over all frames. Ovoid regions of interest (ROIs) encompassing the entire left and right inferior colliculi were drawn (see Figure 1B). The size of the ROIs was mostly constant across animals but ROI locations were manually chosen due to variations in the imaging field. The calcium trace was then smoothed and filtered by regressing the baseline over multiple shifted windows using a spline approximation (‘msbackadj’ function in MATLAB, window and step size - 5 frames). Peaks in the signals were detected in MATLAB using the built-in peak detection function (‘findpeaks’) using a fixed value threshold criterion (1% ΔF/Fo). This method detected the most prominent peaks in both astrocytes and neurons. Peaks were then visually inspected to ensure that they were spatially restricted to the tonotopic organization of the IC and not due to movement. Movement related peaks were manually removed.

For presentation of movies, the bleach corrected images were run through an algorithm for structured low-rank matrix factorization (Haefele et al., 2014). The components were visually inspected and those that showed mainly vascularization were removed. The movies were also pseudo-colored in Fiji (Schindelin et al., 2012). No analysis was performed on these movies, they were for display purposes only.

For two-photon imaging of astrocyte and neurons simultaneously, images were imported into Fiji for presentation. The red and green channels were split and were used for further processing in MATLAB. For presentation purposes, each movie was filtered using a Gaussian blur method (radius = 0.5-1). Brightness and contrast were also adjusted as needed. For analysis in MATLAB, the raw signal was used. Grid ROIs were defined as 25x25 pixels over the entire image, resulting in 400 ROIs for each movie. The calcium...
trace for each ROI was filtered by regressing the baseline over multiple shifted windows using a spline approximation (‘msbackadj’ function in MATLAB, window and step size - 45 frames). To define responsive grid ROIs, peaks in the signal were detected using the built-in ‘findpeaks’ function in MATLAB. The threshold was defined as the median + MAD (median absolute deviation) of each ROI’s signal for neurons and as the median + 3xMAD (median absolute deviation) for astrocytes. These thresholds were manually defined and corroborated for each animal. Events were defined when a peak was detected in at least 10 grids. The events were then visually inspected and manually determined based on the best fit of the grids to the movie. The overlap between astrocyte and neuronal events was determined by having the user draw a polygon around the events and measuring how many astrocyte grids were overlaid compared to all astrocyte grids for that event. The active neuronal grids were then randomly shuffled (using ‘randblock’; 200 times and the overlap was tested for each repetition. Significance was determined by counting the number of times the shuffled data was larger than the measured data divided by the number of simulations. For calculation of event-triggered average, 8 frames of the averaged neuronal signal prior to each astrocyte event was summed over all events and divided by the number of events. The timing of the astrocyte events was then shuffled 100 times and the same calculation was performed. The mean of the event-triggered average and the shuffled version was used for statistical comparison.

Simultaneous IC and auditory cortex (AC) imaging analysis

Ten minutes of calcium imaging were selected manually for less movement of the animal from 50-minute movies. Widefield raw images were imported into MATLAB (MATHWORKS) and corrected for photobleaching by subtracting a fitted exponent from the signal. The right IC was cropped and used for detection of movement using efficient subpixel image registration (Guizar-Sicairos et al., 2008). Image intensities were normalized as \(\Delta F/F_o \) values as described above. An ellipse was manually drawn around the right IC and the average calcium trace within the ROI was calculated. The calcium trace was then smoothed and filtered by regressing the baseline over multiple shifted windows using a spline approximation (‘msbackadj’ function in MATLAB, window and step size - 20 frames). Movement related time-points were zeroed. A correlation was calculated between the IC signal and every pixel of the image to generate the map seen in Figure 2A. The correlation image was used to manually draw an ROI around auditory cortex and the resulting calcium signal was calculated, smoothed and filtered as described above. Pearson’s correlation coefficients were calculated between the IC and AC calcium signals. Cross correlations between the IC and AC mean-subtracted calcium signals were calculated and normalized so that the autocorrelations at zero lag equaled 1. Peaks in the calcium signals were detected in MATLAB using the built-in peak detection function (‘findpeaks’) using a fixed value threshold criterion (1% \(\Delta F/F_o \)).

For the images in Figure 2D, seed ROIs were placed across the future tonotopic axis of the IC manually and fluorescent signals normalized as described above and mean subtracted. For each IC ROI, a correlation was calculated between the calcium signal and all the pixels in a cropped movie which included the IC or the AC. The maps were then combined into RGB channels with the color-coding denoting different active areas.

AC imaging analysis

Widefield raw images were imported into MATLAB (MATHWORKS) and corrected for photobleaching by subtracting a fitted exponent from the signal. Images were cropped to include 1500-1900 \(\mu m^2 \) of auditory cortex. Image intensities were normalized as \(\Delta F/F_o \) values, where \(\Delta F = F - F_o \) and \(F_o \) was defined as the median over all frames. Grid ROIs were defined as 30-50 \(\mu m \) pixels over the cropped image, resulting in 25 ROIs for each movie. The calcium trace for each ROI was smoothed and filtered by regressing the baseline over multiple shifted windows using a spline approximation (‘msbackadj’ function in MATLAB, window and step size - 20 frames). Movement was detected using efficient subpixel image registration (Guizar-Sicairos et al., 2008) and the signal was zeroed during the detected movement events. Peaks in the calcium signals were detected in MATLAB using the built-in peak detection function (‘findpeaks’) using a threshold criterion for the minimum prominence of median + 3MAD for each ROI. The minimum peak width was defined as 20 frames for P4 and P14-15 and 10 frames for P7 and P11 (this was because events at these latter ages were more focal and faster). Peaks that were detected within 20 frames of each other were defined as one event. The detected events were manually inspected against the \(\Delta F \) movie and those that were clearly associated with movement (that were undetected by the algorithm), were manually removed.

Sound evoked imaging analysis

Widefield epifluorescence videos of evoked responses in IC or AC underwent bleach correction and normalization (10th percentile) as \(\Delta F/F_o \) values in MATLAB, as described above for widefield imaging of spontaneous neuronal and astrocyte activity. For dual-color imaging, videos of evoked neuronal and astrocyte activity were processed identically. Image segments were separated by stimulus frequency, aligned from 1 s prior to and 3 s following tone presentation, and averaged across the 4 presentations of each tone. For calculation of \(\Delta F/F_o \) responses, a circular ROI (250 pixel diameter) was placed over auditory cortex after visualization of averaged neuronal pure tone responses to all stimuli (dual-color imaging) or local vasculature patterns (astrocyte imaging alone). Normalized and averaged responses from tone onset to 1 s following tone offset were used for display purposes.

Acute brain slice preparation

Mice were swiftly decapitated and their brains were dissected out and mounted on a vibratome (Leica VT100S) equipped with a sapphire blade. IC slices 250 \(\mu m \) thick were cut in ice-cold N-methyl-D-glucamine (NMDG) based cutting solution, containing (in mM):
Pharmacological manipulations

To minimize the influence of neuronal activity on astrocyte calcium signals in slices, all pharmacological manipulations were performed in Tetrodotoxin citrate (TTX; Na+, antagonist, Alomone labs, 1 μM), unless otherwise noted. In some cases, agonists were applied in the presence of (RS)-CPP (NMDA antagonist, Tocris, 10 μM), and NBQX disodium salt (AMPA antagonist, Tocris, 10 μM) in addition to TTX. In most cases, imaging began with 5 minutes of ACSF and then 5 minutes of TTX perfusion of the slice. Since the activity in these conditions were not significantly different, they were averaged and called ‘Baseline’ for presentation and statistical testing. To activate metabotropic receptors 5 and 3, (S)-3,5-Dihydroxyphenylglycine (DHPG; group I metabotropic glutamate receptor agonist, Tocris, 10 μM) or LY354740 (group II metabotropic receptor agonist, Tocris, 1 μM) were dissolved in ASCF and applied through the superfusing solution. To ensure their specificity, after a 15 min wash, the agonists were applied in the presence of their antagonists: MPEP hydrochloride (an mGluR5 specific antagonist, Tocris, 10 μM) and LY341495 (an mGluR2/3 antagonist, Tocris, 100 μM). In the case of the mGluR5-cKO mice, Norepinephrine (NE; Sigma, 10 μM) was pipetted onto the slice at the end of the experiment to ensure that astrocytes were able to respond reliably with increases in calcium (see Figure 3C). In a subset of experiments, we distinguished between the central nucleus of the IC and the external cortex of the IC using the developing mouse brain atlas and compared the response to the group II agonist LY354740.

Time-lapse fluorescence imaging in acute brain slices

GCaMP in IC astrocytes was imaged using a Zeiss LSM 710 confocal microscope with 20x (NA 1.0) water immersion objective (Zeiss), using the 488 nm laser line. Slices were continuously superfused with ACSF bubbled with 95% O2/5% CO2. Astrocytes were imaged at a low laser power of < 1 mW, with no pixel averaging, high PMT gain (> 750), and with a pinhole size of 1-2.5 airy units, corresponding to 1.6 - 3.6 μm of z-depth. Astrocytes were imaged at an x-y pixel size of 8 bit with a resolution of 512 × 512 pixels over 600 frames at a frame scan rate of 2 Hz.

Image processing for acute brain slice

Images were processed first with Fiji and then with MATLAB. The individual movies for each condition (baseline, agonist, agonist+antagonist, etc.) were loaded for one slice and concatenated. The resulting movie was visually inspected to make sure that no substantial drift occurred. If there was a drift in the Z-plane, the movie was discarded and not used for further analysis. For X-Y drift, the movie was registered in Fiji using the ‘MultiStackReg’ plugin (Thevenaz and Unser, 1998) with a Rigid body transformation, aligning it to the first image in the baseline condition. The concatenated movie was then opened in MATLAB and corrected for photobleaching by subtracting a fitted exponent from the signal. Grid ROIs were defined for each slice separately based on the magnification used so that each square was between (15-25)² μm. For each grid ROI, the ΔF/F0 was calculated, where F was the averaged signal over all pixels in the ROI and F0 was defined as the median over all frames. The calcium trace was then smoothed and filtered by regressing the baseline over multiple shifted windows using a spline approximation (‘msbackadj’ function in MATLAB, window and step size - 45 frames). To define responsive grid ROIs, peaks in the signal were detected using the built-in ‘findpeaks’ function in MATLAB. The threshold was defined for each ROI as the median + 5xMAD of the signal. Area under the curve was calculated with a trapezoidal numerical integration algorithm (‘trapz’ in MATLAB) within a user-defined ‘On time’ when the response was visible in the agonist condition.

Immunohistochemistry

Mice were deeply anesthetized with isoflurane and perfused with freshly prepared 4% paraformaldehyde (PFA) in 0.1M phosphate buffered saline (PBS). Brains were isolated and post-fixed in 4% PFA at least 4 hours at 4°C.Brains were then transferred to artificial cerebral spinal fluid (ACSF) containing (in mM): 119 NaCl, 2.5 KCl, 2.5 CaCl2, 1.3 MgCl2, 1 NaH2PO4, 26.2 NaHCO3, and 11 Dextrose (292-298 mOsm/L) and were maintained at 37°C for 40 min, and at room temperature thereafter. Both NMDG solution and ACSF were bubbled continuously with 95% O2/5% CO2. All slice imaging experiments were carried out at room temperature.

135 NMDG, 1 KCl, 1.2 KH2PO4, 1.5 MgCl2, 0.5 CaCl2, 10 Dextrose, 20 Choline Bicarbonate, (pH 7.4). IC slices were then transferred to artificial cerebral spinal fluid (ACSF) containing (in mM): 119 NaCl, 2.5 KCl, 2.5 CaCl2, 1.3 MgCl2, 1 NaH2PO4, 26.2 NaHCO3, and 11 Dextrose (292-298 mOsm/L) and were maintained at 37°C for 40 min, and at room temperature thereafter. Both NMDG solution and ACSF were bubbled continuously with 95% O2/5% CO2. All slice imaging experiments were carried out at room temperature.

135 NMDG, 1 KCl, 1.2 KH2PO4, 1.5 MgCl2, 0.5 CaCl2, 10 Dextrose, 20 Choline Bicarbonate, (pH 7.4). IC slices were then transferred to artificial cerebral spinal fluid (ACSF) containing (in mM): 119 NaCl, 2.5 KCl, 2.5 CaCl2, 1.3 MgCl2, 1 NaH2PO4, 26.2 NaHCO3, and 11 Dextrose (292-298 mOsm/L) and were maintained at 37°C for 40 min, and at room temperature thereafter. Both NMDG solution and ACSF were bubbled continuously with 95% O2/5% CO2. All slice imaging experiments were carried out at room temperature.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics were performed in MATLAB (Mathworks) or in Excel (Microsoft). All statistical details, including the exact value of n, what n represents, and which statistical test was performed, can be found in the figure legends or in the results section. Unless otherwise noted, data are presented as mean ± standard error of the mean. All datasets were tested for Gaussian normality using the Lilliefors test (this test was chosen because it does not require specification of the null distribution). If datasets were normal, two-tailed paired or unpaired t tests were used. Before unpaired t tests, the data was tested for equality of variance using the F-test. If normality was rejected, the nonparametric Wilcoxon test was used. For single comparisons, significance was defined as p < 0.05. When multiple comparisons were made, the Bonferroni correction was used to adjust p values accordingly to lower the probability of type I errors. For multiple condition datasets with repeated-measures (such as in Figures S4C, S4E, and S4G), a linear mixed effect model was used with fixed effects defined as the different conditions tested and a random noise effect defined as the different slices. The significance was tested using an F-test on the coefficients. Post hoc comparisons were corrected using the Bonferroni method. For comparison of various independent time points, such as in Figure 2F a one-way ANOVA was used with Tukey-Kramer post hoc comparisons.